Spelling suggestions: "subject:"fun.so dde transferência"" "subject:"fun.so dde transferencia""
1 |
AnÃlise de sÃries temporais para previsÃo mensal do icms: o caso do Piauà / Analysis of secular series for monthly forecast of icms: the case of the PiauÃCristovam Colombo dos Santos Cruz 24 August 2007 (has links)
nÃo hà / Esta DissertaÃÃo trata de pesquisa sobre a anÃlise de sÃries temporais para previsÃo mensal do Imposto Sobre CirculaÃÃo e Mercadorias e PrestaÃÃo de ServiÃos â ICMS no estado do PiauÃ. Objetiva-se com essa pesquisa oferecer aos gestores do estado um modelo de previsÃo consistente e com bom poder preditivo, de forma a contribuir com a gestÃo financeira estadual. No trabalho, utilizaram-se os modelos ARIMA e FunÃÃo de TransferÃncia para realizar previsÃes, bem como o Modelo CombinaÃÃo de PrevisÃes. A dissertaÃÃo apresenta um diagnÃstico do ICMS no estado do Piauà e uma revisÃo da literatura onde sÃo abordados os principais aspectos teÃricos dos modelos utilizados no trabalho, bem como a anÃlise dos resultados empÃricos. Ao final, pode-se observar que os resultados obtidos na presente dissertaÃÃo, estÃo em sintonia com outros resultados obtidos em trabalhos semelhantes realizados sobre o tema, o que vem a confirmar a importÃncia dos modelos que utilizam a anÃlise de sÃries temporais como instrumento de prediÃÃo. / This dissertation deals with a research on the temporal series analysis for the monthly forecast of the turnover and services tax â ICMS in Brazil â in the state
of PiauÃ. The aim of this research is to offer the statewide policymakers a consistent forecast and powerfully predictive model, so as to contribute to the
state finance management. In this work, the ARIMA and Assignment Function models were used to carry out forecasts, as well as Forecast Combination. The dissertation presents a diagnosis of the ICMS in the state of PiauÃ, a review on the literature where the main theoretical aspects of the models carried out in the
work are addressed, in addition to the empirical findings analysis. As a conclusion, it can be observed that the findings carried out in this dissertation are in harmony with other results of similar works carried out on the theme, which corroborates the importance of the models using the temporal series analysis as a forecasting instrument.
|
Page generated in 0.0732 seconds