• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento Automático de Placas de Automóveis Utilizando Redes de Kohonen

GONÇALVES, Pedro Rodolfo da Silva 01 September 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-01-18T12:53:32Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Pedro Gonçalves.pdf: 8565820 bytes, checksum: f14c8d37ea1f5daef226a8a6f131bada (MD5) / Made available in DSpace on 2016-01-18T12:53:32Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Pedro Gonçalves.pdf: 8565820 bytes, checksum: f14c8d37ea1f5daef226a8a6f131bada (MD5) Previous issue date: 2015-09-01 / Punir infrações de trânsito, controlar tráfego em rodovias, controlar o acesso a áreas restritas, entre outras, são ações tomadas para melhorar o trânsito nas grandes cidades. Para realizar tais ações é necessário, portanto, identificar o veículo automotivo, utilizando, para isso, sua placa de licenciamento. Entretanto, com o aumento de automóveis nas vias urbanas, essa tarefa tornou-se muito difícil de ser realizada de uma forma eficiente por apenas agentes de trânsito, pois existe uma grande quantidade de dados a serem analisados e reportados aos órgãos competentes. Soma-se a isso, o fato de fatores emocionais, cansaços físico e mental, inerentes aos seres humanos, atrapalharem a eficácia da tarefa executada. Por isso, ferramentas que realizam o reconhecimento ótico de caracteres, Opitcal Character Recognition (OCR), vem sendo cada vez mais empregadas para realizar a identificação automática de caracteres existentes nas placas dos automóveis. Este trabalho visa descrever um sistema para identificação de veículos automotivos através de imagens estáticas, apresentando técnicas pesquisadas e estudadas em cada etapa do processo de identificação. As etapas que são apresentadas e detalhadas incluem: a identificação da placa, segmentação dos caracteres presentes na placa e o reconhecimento dos caracteres isolados. Técnicas envolvendo processamento digital de imagem como detectores de bordas, operações morfológicas, análise de componentes conectados e limiarização serão explicitadas. Redes neurais artificias são propostas para realizar o reconhecimento do caractere isolado, tais como Self-Organizing Maps (SOM) e Kernel Self-Organizing Map (KSOM), e serão pormenorizadas. Para avaliar o desempenho das técnicas empregadas nesse projeto, imagens presentes na base de dados MediaLab LPR Database foram utilizadas. Métricas como Recall, Precision e F-Score foram empregadas na avaliação de performance dos diferentes algoritmos estudados e implementados para realizar a detecção da placa, ajudando na escolha do extrator da placa do sistema final. No estágio de segmentação da placa e do reconhecimento dos caracteres isolados, a taxa de acerto foi utilizada para avaliar os algoritmos propostos. Para um grupo de 276 imagens pertencentes a uma base pública, as etapas de detecção, segmentação e reconhecimento alcançaram desempenhos semelhantes aos vigentes na literatura ANAGNOSTOPOULOS et al. (2006) e propiciaram, aproximadamente, uma taxa de acerto global do sistema OCR proposto de 85%. / Punish traffic infractions, traffic control on highways, control access to restricted areas, among others, are actions taken to improve traffic in major cities. In order to take these actions is therefore necessary to identify the motor vehicle using it licensing plate. However, with the increase of the number of cars on urban roads, this task has become very difficult to be performed effectively only by traffic agents because there is a lot of data to be analyzed and reported to the competent agencies. In addition, the fact that emotional factors, physical and mental tiredness, that inherent features to humans, hider effectiveness of task begin performed. Therefore, tools that perform optical character recognition (OCR) are begin increasingly used for automating the identification of characters on licensing plate of the vehicles. This research describes a system for identification of automotive vehicles through still images showing algorithms researched in the literature on each step of the identification process. The stages are presented and detailed include: plate identification, segmentation of the characters existing in plate and the recognition of single characters. Techniques involving digital image processing like edge detectors, morphological operations, connected component analysis and thresholding are explained. Artificial neural networks are submitted to achieve the recognition of single character, such as Self-Organizing Maps (SOM) and Kernel Self-Organizing Map (KSOM), are detailed. In order to evaluate the performance of the techniques used in this project, images from mainly the MediaLab LPR Database were used. The metrics employed to analyze the performance of algorithms implemented to detect a region of plate on image are Recall, Precision and F-Score. This metrics helped to choose the better algorithms for extraction plate on image. In the segmentation stage of the plate and the recognition of single characters, the hit rate was used to evaluate the proposed algorithms. For group of 276 images belonging a public database, the stages of detection, segmentation and recognition reached similar performance with previous approaches (ANAGNOSTOPOULOS et al., 2006), leading the proposed OCR system to 85% of hit rate.

Page generated in 0.0491 seconds