• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mouse strain-specific splicing of Apobec3

Casey, Ryan Edward 22 August 2006 (has links)
"Host resolution of viral infection is dependent upon components of the innate and acquired immune system. The mammalian protein Apobec3 plays an important role as part of the immune system’s innate defenses through its modification of reverse transcribed viral DNA. Recently, Apobec3 was found to directly inhibit HIV-1 and HBV replication through deaminating newly transcribed deoxycytidine residues to deoxyuridine. The ability of mouse and simian Apobec3 variants to inhibit human retroviruses and vice versa highlights the utility of analyzing cross-species homologues. To better understand this editing enzyme, differentially pathogen-susceptible inbred mice were used as an experimental model. The purpose of this project is to examine the effects of murine Apobec3 (muA3) alternative splicing on its DNA-editing characteristics. Three distinct Apobec3 isoforms were isolated from pathogen-susceptible BALB/cByJ (“C”) inbred mice, and two Apobec3 isoforms came from pathogen-resistant C57BL/6ByJ (“Y”) mice. The five muA3 isoforms were cloned, sequenced, and expressed from a constitutive promoter in a haploid Saccharomyces cerevisia strain. MuA3 DNA-editing activity was measured via the CAN1 forward mutation assay. The five isoforms studied in this project were discovered to be strain-specific. One isoform from each mouse strain mutated the yeast CAN1 locus significantly. Additionally, both muA3 isoform mRNAs derived from the pathogen-resistant Y mice were found to persist at a higher level (2.7 -12.4 fold) than any of the C mouse isoforms. This suggests that the absence of exon 5 or some other signal in the Y mice may influence transcript stability. Evidence also suggests that the murine Apobec3 start codon is actually 33bp upstream of its reference start, with implications for previous research performed using muA3. Sequencing analysis of genomic DNA revealed the presence of a 4bp insertion in a region of BALB/cByJ muA3 which may have disrupted an intronic splicing enhancer signal. Furthermore, a novel BALB/cByJ Apobec3 isoform was characterized. This is the first report of strain-specific processing with regard to muA3."
2

C1q/TNF-Related Protein 3 (CTRP3) Function and Regulation

Li, Ying, Wright, Gary L., Peterson, Jonathan M. 01 January 2017 (has links)
As the largest endocrine organ, adipose tissue secretes many bioactive molecules that circulate in blood, collectively termed adipokines. Efforts to identify such metabolic regulators have led to the discovery of a family of secreted proteins, designated as C1q tumor necrosis factor (TNF)-related proteins (CTRPs). The CTRP proteins, adiponectin, TNF-alpha, as well as other proteins with the distinct C1q domain are collectively grouped together as the C1q/TNF superfamily. Reflecting profound biological potency, the initial characterization of these adipose tissue-derived CTRP factors finds wide-ranging effects upon metabolism, inflammation, and survival-signaling in multiple tissue types. CTRP3 (also known as CORS26, cartducin, or cartonectin) is a unique member of this adipokine family. In this review we provide a comprehensive overview of the research concerning the expression, regulation, and physiological function of CTRP3. © 2017 American Physiological Society. Compr Physiol 7:863-878, 2017.
3

Elucidating novel aspects of hypothalamic releasing hormone receptor regulation

Dromey, Jasmin Rachel January 2008 (has links)
[Truncated abstract] G-protein coupled receptors (GPCRs) form one of the largest superfamilies of cell-surface receptors and respond to a vast range of stimuli including light, hormones and neurotransmitters. Although structurally similar, GPCRs are regulated by many diverse proteins, which allow the specific functions of each receptor to be carried out. This thesis focussed on two well-documented GPCRs, the thyrotropin releasing hormone receptor (TRHR) and gonadotrophin-releasing hormone receptor (GnRHR), which control the thyroid and reproductive endocrine pathways respectively. Although each of these anterior pituitary receptors is responsible for distinct physiological responses, both are integral to normal development and homeostasis. This thesis focused on three areas of GPCR regulation: ?-arrestin recruitment, transcription factor regulation and receptor up-regulation. The role of the cytoplasmic protein, ?-arrestin, has perhaps been previously underestimated in GPCR regulation, but it is now increasingly apparent that ?-arrestins not only inhibit further G-protein activation and assist in GPCR internalisation but also act as complex scaffolding platforms to mediate and amplify downstream signalling networks for hours after initial GPCR activation. It is therefore becoming increasingly important to be able to monitor such complexes in live cells over longer time-frames. ... Members of the E2F transcription family have been previously identified by this laboratory as potential GnRHR interacting proteins, via a yeast-2-hybrid screen and BRET. This thesis further investigated the role of E2F family members and demonstrates that a range of GPCRs are able to activate E2F transcriptional activity when stimulated by agonist. However, despite GnRHR displaying robust E2F transcriptional activation upon agonist stimulation, this did not result in any conclusive evidence for functional regulation, although it is possible E2F may modulate and assist in GnRHR trafficking. Furthermore it is apparent that E2F family members are highly redundant, as small effects in GnRHR binding and cell growth were only observed when protein levels of both E2F4 and E2F5 were altered. During the course of the investigation into the effect of E2F transcription on GPCR function, it was evident that long-term agonist stimulation of GnRHR had a profound effect on its expression. As this was explored further, it became clear that this agonist-induced up-regulation was both dose- and time-dependent. Furthermore, altering levels of intracellular calcium and receptor recycling/synthesis could modulate GnRHR up-regulation. In addition, an extremely sensitive CCD camera has been used for the first time to visualise the luciferase activity attributed to GnRHR up-regulation. Overall, this thesis demonstrates the complex nature of GPCR regulation. For the first time, long-term BRET analysis on ?-arrestin interactions with both classes of GPCRs has been examined in a variety of cellular formats. This has given valuable insights into the roles of phosphorylation and internalisation on ?-arrestin interaction. Additionally, this thesis has revealed that prolonged agonist exposure increases receptor expression levels, which has major implications for drug therapy regimes in the treatment of endocrine-related disorders and tumours.

Page generated in 0.1681 seconds