1 |
Nanocomposite Membrane via Magnetite Nanoparticle AssemblyXie, Yihui 07 1900 (has links)
Membrane technology is one of the most promising technologies for addressing the global water crisis as well as in many other applications. One of the drawbacks of current ultra- and nanofiltration membranes is the relatively broad pore size distribution. Block copolymer membranes with ultrahigh permeability and very regular pore sizes have been recently demonstrated with pores being formed by the supramolecular assembly of core/shell micelles. Our study aimed at developing an innovative and economically efficient alternative method to fabricate isoporous membrane by self-assembly of magnetic nanoparticle with a polystyrene shell, mimicking the behavior of block copolymer micelle. Fe3O4 nanoparticles of ~13 nm diameter were prepared by co-precipitation as cores. The initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles with two strategies. Then the surface initiated ATRP of styrene was carried out to functionalize nanoparticles with polystyrene through a “grafting from” method. Finally, the nanocomposite membrane was cast from 50 wt % Fe3O4@PS brush polymer solution in DMF via non solvent phase inversion. Microscopies reveal an asymmetric membrane with a dense thin layer on top of a porous sponge-like layer. This novel class of asymmetric membrane, based on the pure assembly of functionalized nanoparticles was prepared for the first time. The nanoparticles are well distributed however with no preferential order yet in the as-cast film.I would like to thank my committee chair and advisor, Prof. Suzana Nunes, and other committee members, Prof. Klaus-Viktor Peinemann and Prof. Gary Amy, for their guidance and support throughout the course of this research. My appreciation also goes to my colleagues in our group for useful discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and Dr. Long Chen, for their assistance for various microscopy measurements. Finally, my heartfelt gratitude is extended to my parents and all my friends. I cannot finish this thesis without their encouragement and support.
|
2 |
Functionalized Nanoparticles for Biological Imaging and Detection ApplicationsMei, Bing C. 01 February 2009 (has links)
Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable in aqueous media and lack simple and reliable means of covalently linking to biomolecules. The focus of this work is to advance the progress of these nanomaterials for biotechnology by synthesizing them, characterizing their optical properties and rendering them water-soluble and functional while maintaining their coveted optical properties. QDs were synthesized by an organometallic chemical procedure that utilizes coordinating solvents to provide brightly luminescent nanoparticles. The optical interactions of these QDs were studied as a function of concentration to identify particle size-dependent optimal concentrations, where scattering and indirection excitation are minimized and the amount light observed per particle is maximized. Both QDs and AuNPs were rendered water-soluble and stable in a broad range of biologically relevant conditions by using a series of ligands composed of dihydrolipoic acid (DHLA) appended to poly(ethylene glycol) methyl ether. By studying the stability of the surface modified AuNPs, we revealed some interesting information regarding the role of the surface ligand on the nanoparticle stability (i.e. solubility in high salt concentration, resistance to dithiothreitol competition and cyanide decomposition). Furthermore, the nanoparticles were functionalized using a series of bifunctional ligands that contain a dithiol group (DHLA) for surface binding, a PEG segment to instill water-solubility and a terminal functional group for easy bioconjugation (i.e. NH 2 , COOH, or biotin). Finally, a sensing application was demonstrated to detect the presence of microbial DNA (unmethlylated CpG) by using Toll-like receptor 9 proteins as the recognition components and the QDs as the transduction elements via Förster Resonance Energy Transfer.
|
3 |
Elaboration de nanoparticules de poly (acide lactique) multifonctionnelles comme adjuvants potentiels de vaccinationHandke, Nadege 12 December 2011 (has links)
La vaccination est l’un des moyens les plus efficaces de la médecine moderne dans le combat contre les maladies infectieuses. L’amélioration de l’efficacité des vaccins requiert la mise au point d’adjuvants permettant d’accroître la qualité de la réponse immunitaire. À titre d’exemple, les nanoparticules (NP) de poly(acide lactique) (PLA) constituent un système efficace pour la délivrance d’antigènes. Afin de renforcer leur potentiel vaccinal, ce travail de recherche a eu pour objectif d’élaborer des NP de PLA décorées en surface par des molécules immunostimulantes, le D-mannose ou un peptide dérivé de l’interleukine-Beta, et au cœur, par l’imiquimod. Notre stratégie repose sur l’utilisation d’un tensioactif macromoléculaire composé d’un bloc de PLA et d’un bloc de poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (P(NAS-co-NVP)), dont les fonctions ester de N-succinimidyle (NS) permettent le couplage de biomolécules. Ce copolymère a été synthétisé par combinaison de la polymérisation par ouverture de cycle et de la polymérisation radicalaire contrôlée par les nitroxydes (NMP). Après l’étude de la copolymérisation du NAS et de la NVP par NMP à partir d’une alcoxyamine modèle (MAMA-SG1), leur copolymérisation a été réalisée à partir de la macro-alcoxyamine PLA-SG1, conduisant au copolymère PLA-b-P(NAS-co-NVP) désiré. Des NP de PLA ont alors été préparées par nanoprécipitation et diafiltration en présence du copolymère, conduisant à des tailles respectives de 150 et 500 nm. Des études de potentiel zêta et de spectrométrie UV ont démontré la présence des esters de NS à la surface des NP (2.4 fonctions.nm-2), disponibles pour le couplage des biomolécules. Des micelles de copolymère ont été également préparées, après substitution des esters de NS par des sucres, et permettent une encapsulation efficace de l’imiquimod, contrairement aux NP de PLA. Ces systèmes constituent une plateforme flexible d’adjuvants potentiels comme alternative aux adjuvants non biodégradables actuellement utilisés. / Vaccination represents one of the most powerful tools of medicine for the fight against infectious diseases. The improvement of vaccine efficiency needs the development of adjuvants able to increase the quality of the immune response. Poly(lactic acid) (PLA) nanoparticles (NPs) represent an efficient system for antigen delivery. In order to improve their vaccine potential, the goal of this research work was to elaborate PLA NPs decorated at the surface with immunostimulatory molecules, D-mannose or peptide derived from interleukine-Beta, and into the core with imiquimod. Our strategy relies on the use of a macromolecular surfactant composed of a PLA block and a poly(N- acryloxysuccinimide-co-N-vinylpyrrolidone) (P(NAS-co-NVP)) block, whose N-succinimidyl (NS) activated esters allow the coupling of biomolecules. This diblock copolymer was synthesized by the combination of ring opening polymerization and nitroxide mediated polymerization (NMP). After the study of the copolymerization of NAS and NVP by NMP from the MAMA-SG1 model alkoxyamine, their copolymerization was performed from the macro-alkoxyamine PLA-SG1, leading to the desired copolymer PLA-b-P(NAS-co-NVP). PLA NPs were then prepared by nanoprecipitation and diafiltration, in the presence of the copolymer, leading to 150 nm and 500 nm sized particles, respectively. Studies of zeta potential and UV spectrometry demonstrated the presence of NS-activated esters at the NP surface (2.4 functions.nm-2), available for the coupling of biomolecules. Micelles from copolymer were also prepared, after substitution of esters with carbohydrates, and allowed an efficient encapsulation of imiquimod, contrary to PLA NPs. These systems represent a flexible platform of potential adjuvants as an alternative to non-biodegradable adjuvants currently used.
|
Page generated in 0.4551 seconds