Spelling suggestions: "subject:"fusion dess informations"" "subject:"fusion deus informations""
1 |
Annotation automatique d'images à partir de leur contenu visuel et des régions textuelles associées. Application dans le contexte d'un catalogue de santé en ligne / Automatic image annotation based on their visual content and image-related textual regions. Applications in the context of an online health catalogueFlorea, Filip Ionut 07 November 2007 (has links)
À l’heure actuelle, l’Internet est devenu une des sources d’information les plus importantes dans des nombreux domaines, dont le domaine de la santé. Les images médicales portent des informations importantes pour le diagnostic, l’enseignement et la recherche, des informations parfois difficiles à décrire textuellement. Avec le développement des technologies d’acquisition, les images médicales sont de plus en plus nombreuses dans les bases d’images et dans les documents en ligne. Vu l’importance des images médicales pour le diagnostic, l’enseignement et même l’éducation civique, des méthodes et des outils efficaces d’annotation, d’indexation et de recherche des images médicales sont nécessaires. Dans ce contexte, nous proposons une architecture pour l’annotation des images médicales incluses dans des documents de santé en ligne. Notre système extrait des informations médicales spécifiques (i.e. modalité médicale, région anatomique) à partir de plusieurs sources, et combine ces informations pour annoter les images. Cette annotation est nécessaire pour pouvoir retrouver les images à l’intérieur des documents sur le web. Dans nos expérimentations, nous avons implémenté deux approches (chacune basée sur une source d’information) : une première orientée vers le contenu des images, et une deuxième orientée sur le contexte des images (régions textuelles associées aux images). / Today, Internet has become a major source of information in many areas, including health. Medical images are carrying crucial information for diagnostic, teaching and research, moste of the time this information being very difficult to describe using only text. In this context, we are proposing architecture for the annotation of medical images included in online health documents. Our system extracts specific medical information (modality, anatomical regions ...) from several sources and combines this information to annotate the images. This annotation is necessary to be able to search for images inside documents. We implemented two distinct approaches (each based on a different type of information) : one oriented towards the image content, and a second oriented on the image context (image-related textual regions).
|
2 |
Reconnaissance de la Langue Française Parlée Complété (LPC) : décodage phonétique des gestes main-lèvres.Aboutabit, Noureddine 11 December 2007 (has links) (PDF)
La Langue Française Parlée Complétée (LPC) héritée du Cued Speech (CS) a été conçue pour compléter la lecture labiale par nature ambigüe et ainsi améliorer la perception de la parole par les sourds profonds. Dans ce système, le locuteur pointe des positions précises sur le côté de son visage ou à la base du cou en présentant de dos des formes de main bien définies. La main et les lèvres portent chacune une partie complémentaire de l'information phonétique. Cette thèse présente tout d'abord une modélisation du flux manuel pour le codage automatique des positions de la main et de la configuration. Puis les travaux sont centrés sur le flux labial en discutant la classification des voyelles et des consonnes du Français. Le flux labial est composé des variations temporelles de paramètres caractéristiques issus du contour interne et externe des lèvres. Dans le cas des voyelles la méthode de classification utilise la modélisation gaussienne et les résultats montrent une performance moyenne de 89 % en fonction de la position de la main LPC. Le contexte vocalique est pris en compte dans le cas des consonnes par une modélisation HMM de la transition labiale de la consonne vers la voyelle avec un taux d'identification de 80 % en termes de visèmes CV. Un modèle de fusion « Maître-Esclave » piloté par le flux manuel est présenté et discuté dans le cadre de la reconnaissance des voyelles et des consonnes produites en contexte LPC. Le modèle de fusion prend en compte les contraintes temporelles de la production et la perception du LPC, ce qui constitue aussi une première contribution à la modélisation du système LPC du point de vue perceptif.
|
Page generated in 0.1804 seconds