Spelling suggestions: "subject:"fusionner"" "subject:"conditionnés""
1 |
Synthesis, self-assembly and photophysical evaluation of fluorophores derived from acenes, heteroacenes and quinazolines / Synthèse, auto-assemblage et étude photophysique de fluorophores dérivés d'acènes, d'heteroacènes et de quinazolinesDoan, Thu Hong 26 January 2018 (has links)
Les semiconducteurs organiques (OSC) tels que les composés organiques photovoltaïques (OPVs), les diodes électroluminescentes organiques (OLEDs) ou encore les transistors organiques à effet de champ (OFETs) constituent un domaine de recherche très attractif en raison de leur potentiel en tant que couches actives dans les dispositifs optoélectroniques. Les composés aromatiques polycycliques ainsi que les hétéroaromatiques sont considérés comme des matériaux prometteurs pour les OSC en raison de leurs conductivités électriques potentielles, de leurs propriétés optiques ainsi que de leurs assemblages géométriques. Ces deux systèmes et leurs propriétés photophysiques ont été étudiés dans les trois chapitres de cette thèse. Dans le premier chapitre, une étude sur un ensemble d'acènes linéaires, angulaires et condensés consistant en des liens hétéroatomes avec des agrégations uniques a été décrite et analysée. Les hétéroacènes N-fusionnés angulaires et π-étendus sont la classe principale étudiée dans le deuxième chapitre. Leurs synthèses sont basées sur la réaction de couplage de Suzuki-Miyaura et la réaction de Cadogan. Outre les acènes et les hétéroacènes N-fusionnés, les N-hétéroaromatiques ont fait l'objet d'une attention particulière dans le domaine de matériaux. L'un d'entre eux est la classe des quinazolines utilisées comme partie acceptrice d'électrons dans les structures push-pull pour le transfert de charge intramoléculaire (TCI). L'étude des relations entre les structures dérivées du motif quinazoline de type donneur d'électron-accepteur-donneur (D-A-D) et leurs propriétés de photoluminescence est le principal travail mentionné dans le troisième chapitre. / Organic semiconductors (OSCs) are a highly attractive research field due to their potentials as active layers in optoelectronic devices such as organic field-effect transistors (OFETs), organic photovoltaic (OPVs) and organic light emitting diodes (OLEDs). Polycyclic aromatic compounds as well as heteroaromatics are considered as promising materials for OSCs due to their semi conductivity properties, optical properties and geometric structures. The mentioned systems and their photophysical properties were investigated in three chapters of my thesis. In the first chapter, a study on a set of linear, angular and condensed acenes consisting of heteroatom linkages with unique aggregations was described and analyzed. The angular and π-extended N-fused heteroacenes are the main class studied in the second chapter. Their synthesis is based on the Suzuki-Miyaura coupling and the Cadogan reactions. Besides acenes and N-fused heteroacenes, N-heteroaromatics have gained attention in material area. One of them is the quinazoline class that is known as an electron withdrawing unit in push-pull structures for intramolecular charge transfer (ICT). The investigation of the relationships between the electron donor-acceptor-donor (D-A-D) quinazoline-based structures and their photoluminescence properties is the main work mentioned in the third chapter.
|
2 |
Décomposition par séparateurs minimaux complets et applicationsPogorelcnik, Romain 04 December 2012 (has links) (PDF)
Nous avons utilisé la décomposition par séparateurs minimaux complets. Pour décomposer un graphe G, il est nécessaire de trouver les séparateurs minimaux dans le graphe triangulé H correspondant. Dans ce contexte, nos premiers efforts se sont tournés vers la détection de séparateurs minimaux dans un graphe triangulé. Nous avons défini une structure, que nous avons nommée 'atom tree'. Cette dernière est inspirée du 'clique tree' et permet d'obtenir et de représenter les atomes qui sont les produits de la décomposition. Lors de la manipulation de données à l'aide de treillis de Galois, nous avons remarqué que la décomposition par séparateurs minimaux permettait une approche de type 'Diviser pour régner' pour les treillis de Galois. La détection des gènes fusionnés, qui est une étape importante pour la compréhension de l'évolution des espèces, nous a permis d'appliquer nos algorithmes de détection de séparateurs minimaux complets, qui nous a permis de détecter et regrouper de manière efficace les gènes fusionnés. Une autre application biologique fut la détection de familles de gènes d'intérêts à partir de données de niveaux d'expression de gènes. La structure de 'l'atom tree' nous a permis d'avoir un bon outils de visualisation et de gérer des volumes de données importantes.
|
3 |
Decomposition by complete minimum separators and applications / Décomposition par séparateurs minimaux complets et applicationsPogorelcnik, Romain 04 December 2012 (has links)
Nous avons utilisé la décomposition par séparateurs minimaux complets. Pour décomposer un graphe G, il est nécessaire de trouver les séparateurs minimaux dans le graphe triangulé H correspondant. Dans ce contexte, nos premiers efforts se sont tournés vers la détection de séparateurs minimaux dans un graphe triangulé. Nous avons défini une structure, que nous avons nommée 'atom tree'. Cette dernière est inspirée du 'clique tree' et permet d'obtenir et de représenter les atomes qui sont les produits de la décomposition. Lors de la manipulation de données à l'aide de treillis de Galois, nous avons remarqué que la décomposition par séparateurs minimaux permettait une approche de type `Diviser pour régner' pour les treillis de Galois. La détection des gènes fusionnés, qui est une étape importante pour la compréhension de l'évolution des espèces, nous a permis d'appliquer nos algorithmes de détection de séparateurs minimaux complets, qui nous a permis de détecter et regrouper de manière efficace les gènes fusionnés. Une autre application biologique fut la détection de familles de gènes d'intérêts à partir de données de niveaux d'expression de gènes. La structure de `l'atom tree' nous a permis d'avoir un bon outils de visualisation et de gérer des volumes de données importantes. / We worked on clique minimal separator decomposition. In order to compute this decomposition on a graph G we need to compute the minimal separators of its triangulation H. In this context, the first efforts were on finding a clique minimal separators in a chordal graph. We defined a structure called atom tree inspired from the clique tree to compute and represent the final products of the decomposition, called atoms. The purpose of this thesis was to apply this technique on biological data. While we were manipulating this data using Galois lattices, we noticed that the clique minimal separator decomposition allows a divide and conquer approach on Galois lattices. One biological application of this thesis was the detection of fused genes which are important evolutionary events. Using algorithms we produced in the course of along our work we implemented a program called MosaicFinder that allows an efficient detection of this fusion event and their pooling. Another biological application was the extraction of genes of interest using expression level data. The atom tree structure allowed us to have a good visualization of the data and to be able to compute large datasets.
|
Page generated in 0.0598 seconds