1 |
Generation of Fuzzy Classification Systems using Genetic AlgorithmsLee, Cheng-Tsung 20 February 2006 (has links)
In this thesis, we propose an improved fuzzy GBML¡]genetic-based machine learning¡^algorithm to construct a FRBCS¡]fuzzy rule-based classification system¡^for pattern classification problem.
Existing hybrid fuzzy GBML algorithm is consuming more computational time since it used the SS fuzzy model and combined with the Michigan-style algorithm for increasing the convergent rate of the Pittsburgh-style algorithm. By contrast, our improved fuzzy GBML algorithm is consuming less computational time since it used the MW fuzzy model and instead of the role of the Michigan-style algorithm by a heuristic procedure. Experimental results show that improved fuzzy GBML algorithm possesses the shorter computational time, the faster convergent rate, and the slightly better classification rate.
|
Page generated in 0.038 seconds