1 |
Design and Implementation of PUF Based Protocols for Remote Integrity VerificationGaddam, Shravya 26 July 2016 (has links)
In recent years, there has been a drastic increase in the prevalence of counterfeiting within the electronics supply chain. At the same time, high-end commercial off-the-shelf components like FPGAs and expensive peripherals are making their way onto printed circuit boards. Manufacturers of such PCBs lose billions of dollars as well as their reputation when counterfeiting incidents are revealed within their supply chain. Moreover, there are several safety and security implications of using PCBs with counterfeit components. In this context, it is useful to enable remote integrity checking of these PCBs to identify and mitigate any safety or security concerns when they are deployed. Typical integrity checks look for the presence of an identifier embedded within a secure memory on the PCB. This approach is now being replaced by hardware intrinsic identifiers based on Physical Unclonable Functions or PUFs. Such identifiers can be used to establish trust within any component on a PCB.
In this thesis, we present two PUF based protocols for remote integrity checking of PCBs by Manufacturers or end users. We propose one of the protocols for a special case of remote integrity checking - the Third Party Verification. The protocols are demonstrated using prototypes running on two different platforms - Altera DE2-115 and TI MSP430. Finally, we evaluate their performance on these prototypes and determine the feasibility of their use. / Master of Science
|
Page generated in 0.0677 seconds