• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

Zhao, Mansuo January 2005 (has links)
Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have &quote;C&quote; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the &quote;Onion-Peeling&quote; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A &quote;bad&quote; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the &quote;C&quote; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the &quote;Onion-Peeling&quote; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images.
2

Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

Zhao, Mansuo January 2005 (has links)
Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have &quote;C&quote; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the &quote;Onion-Peeling&quote; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A &quote;bad&quote; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the &quote;C&quote; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the &quote;Onion-Peeling&quote; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images.
3

Fuzzy voting in clustering

Dimitriadou, Evgenia, Weingessel, Andreas, Hornik, Kurt January 1999 (has links) (PDF)
In this paper we present a fuzzy voting scheme for cluster algorithms. This fuzzy voting method allows us to combine several runs of cluster algorithms resulting in a common fuzzy partition. This helps us to overcome instabilities of the cluster algorithms and results in a better clustering. / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
4

Quelques propositions pour la comparaison de partitions non strictes / Some proposals for comparison of soft partitions

Quéré, Romain 06 December 2012 (has links)
Cette thèse est consacrée au problème de la comparaison de deux partitions non strictes (floues/probabilistes, possibilistes) d’un même ensemble d’individus en plusieurs clusters. Sa résolution repose sur la définition formelle de mesures de concordance reprenant les principes des mesures historiques développées pour la comparaison de partitions strictes et trouve son application dans des domaines variés tels que la biologie, le traitement d’images, la classification automatique. Selon qu’elles s’attachent à observer les relations entre les individus décrites par chacune des partitions ou à quantifier les similitudes entre les clusters qui composent ces partitions, nous distinguons deux grandes familles de mesures pour lesquelles la notion même d’accord entre partitions diffère, et proposons d’en caractériser les représentants selon un même ensemble de propriétés formelles et informelles. De ce point de vue, les mesures sont aussi qualifiées selon la nature des partitions comparées. Une étude des multiples constructions sur lesquelles reposent les mesures de la littérature vient compléter notre taxonomie. Nous proposons trois nouvelles mesures de comparaison non strictes tirant profit de l’état de l’art. La première est une extension d’une approche stricte tandis que les deux autres reposent sur des approches dite natives, l’une orientée individus, l’autre orientée clusters, spécifiquement conçues pour la comparaison de partitions non strictes. Nos propositions sont comparées à celles de la littérature selon un plan d’expérience choisi pour couvrir les divers aspects de la problématique. Les résultats présentés montrent l’intérêt des propositions pour le thème de recherche qu’est la comparaison de partitions. Enfin, nous ouvrons de nouvelles perspectives en proposant les prémisses d’un cadre qui unifie les principales mesures non strictes orientées individus. / This thesis is dedicated to the problem of comparing two soft (fuzzy/ probabilistic, possibilistic) partitions of a same set of individuals into several clusters. Its solution stands on the formal definition of concordance measures based on the principles of historical measures developped for comparing strict partitions and can be used invarious fields such as biology, image processing and clustering. Depending on whether they focus on the observation of the relations between the individuals described by each partition or on the quantization of the similarities between the clusters composing those partitions, we distinguish two main families for which the very notion of concordance between partitions differs, and we propose to characterize their representatives according to a same set of formal and informal properties. From that point of view, the measures are also qualified according to the nature of the compared partitions. A study of the multiple constructions on which the measures of the literature lie completes our taxonomy. We propose three new soft comparison measures taking benefits of the state of art. The first one is an extension of a strict approach, while the two others lie on native approaches, one individual-wise oriented, the other cluster-wise, both specifically defined to compare soft partitions. Our propositions are compared to the existing measures of the literature according to a set of experimentations chosen to cover the various issues of the problem. The given results clearly show how relevant our measures are. Finally we open new perspectives by proposing the premises of a new framework unifying most of the individual-wise oriented measures.

Page generated in 0.1052 seconds