241 |
Effect of grain refiner-modifier interaction on the performance of A356.2 alloyGolbahar, Behnam January 2008 (has links) (PDF)
L'affinage de grain et la modification sont deux traitements communs du métal liquide appliqués aux alliages de fonderie Al-Si. La modification est effectuée au moyen d'additions d'éléments tels que le Na, le Sr ou le Sb dans le but de changer la morphologie du silicium eutectique d'aciculaire à la forme fine et fibreuse, et améliorer de ce fait la ductilité de l'alliage. Une structure de grain fine et équiaxe améliorera également les propriétés mécaniques; ceci est réalisé par le processus de raffinement de grain, où l'addition d'éléments tels que le Ti et le B à l'aluminium liquide - habituellement présentés sous forme d'alliage mère d'aluminium - fournissent des noyaux nécessaires pour la formation d'un grand nombre de grains, et par conséquent une structure de grain fine est réalisée. L'utilisation d'une combinaison d'un affineur de grain et d'un modificateur pour certains alliages hypoeutectiques de fonderie Al-Si a démontrée qu'il causait un certain degré d'empoisonnement en termes de réduction du niveau de la modification des particules de silicium et de l'affinage de grain.
Le présent travail vise l'étude de l'influence de l'addition du Ti et du B sous forme de cinq alliages mères différents (affineurs de grain), à savoir, Al-lQ%Ti, Al-5%Ti-l %B, Al-2.5%Ti-2.5%B, Al-1.7%Ti-1.4%B et A1-4%B en combinaison avec le Sr comme modificateur sous forme d'Al-10%Sr dans l'alliage A356.2. L'affinement de grain de l'alliage A356.2 avec des additions de Ti et de B dans des gammes allant de 0.02 à 0.5% et 0.01 à 0.5%, respectivement, a été examiné en utilisant ces différents types d'affineurs de grain. Des additions de strontium ont été réalisées à deux niveaux de 30 et 200 ppm. L'occurrence de toutes les interactions probables de Sr-Ti et/ou de B-Sr a été étudiée en utilisant l'analyse par la microsonde et les techniques métallographiques. Tous les alliages ont subi un traitement thermique de type T6 avant l'essai mécanique. Des essais de traction et de resilience ont été effectués pour évaluer l'influence de l'interaction entre F affineur de grain et le modificateur sur les propriétés mécaniques. Les propriétés ont été déterminées pour les alliages tels que coulés et pour ceux traités thermiquement. Des techniques thermiques d'analyse ont également été employées pour évaluer les interactions entre le Sr et le B, aussi bien que celles entre le Sr et le Ti.
L'analyse à l'aide de la microsonde électronique a indiqué que l'ajout de B > 0.1% à l'alliage A356.2 peut mener à la formation des particules contenant principalement le B et Sr, avec une composition approchant SrBô. Aucune interaction significative entre le Sr et le Ti n'a été observée dans le contexte de l'effet sur les caractéristiques eutectiques des particules de silicium. Les mesures quantitatives des microstructures prouvent que la morphologie des particules eutectiques de silicium est soumise à un retour important à une forme brute et aciculaire. La recherche a également montré que l'interaction B-Sr peut retarder raffinement des grains de l'alliage A356.2 contenant 0.02-0.1%B. Cette interaction peut diminuer considérablement les propriétés mécaniques de l'alliage, en particulier, dans la condition telle que coulée. Ainsi, le contenu en B de l'alliage devrait être considéré en tant qu'un des paramètres qui affectent raffinement de grain et la modification des alliages A356.2.
|
242 |
Étude sur la fissuration à chaud de l'alliage 6061 lors du soudage par procédé hybride laser-GMAWRasmussen, Dany January 2008 (has links) (PDF)
Les alliages d'aluminium sont de plus en plus utilisés dans les domaines de l'ingénierie. En effet, leurs excellentes propriétés mécaniques, ainsi que leur faible densité en font des alliages de hautes performances. L'assemblage des alliages d'aluminium par soudage n'est cependant pas aussi facile que pour le cas de l'acier et demande de plus grandes précautions. Ces difficultés sont grandement causées par les propriétés physiques et thermiques des alliages à base d'aluminium. Minimiser l'apport de chaleur aux pièces à souder peut, dans certains cas aider à surmonter ces difficultés.
Le soudage par procédé hybride laser-GMAW est un procédé à haute densité énergétique, ce qui permet de diminuer la chaleur introduite à la pièce. Cependant, dans le cadre d'essais effectués au Centre des technologies de l'aluminium du conseil national de recherches du Canada, sur l'alliage d'aluminium AA6061-T6, un problème de fissuration à chaud a été observé lorsque de grandes vitesses de soudage sont utilisées. Ces essais ont été réalisés en configuration cordon sur plaque avec un métal de base de nuance AA6061, ainsi qu'un matériau d'apport de type AA4043.
La fissuration à chaud est occasionnée par le changement dimensionnel des métaux avec la température ainsi que par le bridage empêchant cette modification volumique. Le présent projet ne vise que l'étude de la partie métallurgique de la fissuration à chaud. Plusieurs essais ont été réalisés à l'aide de plans d'expériences afin de cibler l'influence des éléments d'alliages ainsi que celle de la microstructure, sur la fissuration à chaud des soudures. Chaque cordon de soudure a été observé à faible grossissement optique afin de déterminer le degré de sévérité de la fissuration à chaud. Par la suite une coupe transversale de chaque cordon a été effectuée afin de caractériser la géométrie ainsi que la composition chimique. Une analyse en profondeur à l'aide d'un microscope électronique à balayage (MEB) a par la suite été produite sur certains échantillons.
Ces essais ont permis de démontrer que la vitesse de soudage avait une influence certaine sur le phénomène de fissuration de solidification. De plus, la composition chimique de l'alliage peut sérieusement affecter le degré de sensibilité à la fissuration à chaud. Des résultats ont démontré que le ratio fer/silicium peut avoir une grande influence sur le phénomène de fissuration à chaud. En effet, certains composés intermétalliques pourraient causer la fissuration de solidification lors du soudage hybride laser-GMAW.
|
243 |
Effet des additifs sur la microstructure et les propriétés mécaniques des alliages d'aluminium-siliciumMohamed, Adel January 2008 (has links) (PDF)
Les alliages aluminium-silicium, particulièrement à la composition eutectique, sont souvent employés dans l'industrie de l'automobile en raison de leur de faible densité relative à des matériaux traditionnels. Les propriétés mécaniques de tels alliages sont déterminées principalement par les constituants microstructuraux de leur structure après la coulée, les morphologies et les quantités de leurs phases intermétalliques. Dans l'état non modifié, les alliages Al-Si montrent un silicium eutectique ayant une forme aciculaire ou lamellaire, de ce fait, ces alliages ont tendance à montrer de faibles résistance et ductilité. Ainsi, les alliages avec une structure principalement eutectique doivent subir la modification afin d'assurer des propriétés mécaniques adéquates. La qualité de du produit coulé peut être améliorée par affînement des grains, ceci permet de réduire la taille des grains primaires de la phase a-aluminium qui solidifie autrement dans une structure de grain grossière. La production des alliages Al-Si avec une stracture et des propriétés mécaniques améliorées implique l'application de deux processus principaux : (i) addition de tels éléments d'alliage comme Mg, Cu, Mn, et autres éléments semblables, pendant l'état liquide; et (ii) traitement thermique. Les éléments de microalliage ou éléments de trace utilisés dans les alliages commerciaux d'aluminium sont de 0.5 à 1.0 % en poids de Pb, Bi, Sn et In, qui ont peu ou pas de solubilité en aluminium, c.-à-d. ils ont des coefficients de distribution extrêmement bas.
L'influence du fer (0.5-1 % en poids), du manganèse (0.5-1 % en poids), du cuivre (2.25- 3.25 % en poids), et du magnésium (0.3-0.5 % en poids), aussi bien que celle des éléments Pb, Bi, Sn, et In, sur la microstructure et les propriétés mécaniques de l'alliage préeutectique Al-10.8%Si modifié et raffiné a été étudiée dans deux conditions, à savoir, tel que coulé et application d'un traitement thermique. Les alliages en fusion ont été versés dans (a) un moule métallique graphite-enduit rectangulaire de forme L préchauffé à 450 °C pour des mesures métallographiques et de dureté ; et (b) un moule permanent de type ASTM B-108 et (c) un moule d'essai au choc d'acier doux pour produire les échantillons du test nécessaire. L'évaluation microstructurale a été effectuée en utilisant la microscopie optique en même temps que l'analyse d'image pour la quantification. L'identification de phase a été effectuée en utilisant la microsonde électronique (EPMA), couplé aux équipements d'EDX et de WDS. Les barreaux d'essai ont été divisés en sept jeux : un ensemble a été gardé dans la condition de tel que coulé, alors que les six autres ensembles étaient traités thermiquement, une mise en solution à 495°C pour 8 h, puis une trempe dans l'eau chaude à 65°C, suivi d'un vieillissement artificiel à 155 °C, 180 °C, 200 °C, 220 °C, et 240°C, respectivement, pendant 5 heures (c.-à-d. les traitements T6 et T7). Les propriétés mécaniques ont été évaluées à la température ambiante par la dureté, les propriétés de traction et d'impact pour les deux conditions, tel que coulé et application du traitement thermique. Les mesures de dureté ont été effectuées en utilisant un appareil de contrôle brinell de dureté. Des propriétés de traction ont été déterminées à l'aide d'une machine d'essai mécanique de Servohydraulic MTS. Les propriétés d'impact ont été évaluées à l'aide d'une machine de test d'impact Charpy.
En matière de l'addition des éléments d'alliage, les résultats prouvent que l'effet de modification du Sr diminue à mesure que la quantité de cuivre et de magnésium supplémentaires est augmentée, en raison des interactions entre ces éléments, ce qui cause une ségrégation grave des phases d'A^Cu dans les secteurs loin du silicium eutectique modifié et change la séquence de précipitation de la phase «-Ali5(Fe,Mn)3SÍ2 d'une réaction post-dendritique à pré-dendritique où l'intermétallique est observé pour se produire dans les dendrites d'à-AL Dépendant de la teneur en Fe et en Mn dans l'alliage, une grande variation dans la phase a est observée sous forme de particules formées polyhédrales connues sous le nom de « sludge ». La phase d'A^Cu est vue pour se dissoudre presque totalement pendant le traitement thermique de mise en solution, alors que les phases AlsCuaMggSió et les phases intermétalliques du fer 0f-Ali5(Fe,Mn)3SÍ2 s'avèrent pour persister pour tous les alliages étudiés, particulièrement ceux qui contiennent les niveaux élevés du Mg et du Fe. La phase intermétallique de fer de B-Als(Fe,Mn)3Si se dissout partiellement dans les alliages modifiés par le Sr, et sa dissolution devient plus prononcée après traitement thermique de mise en solution.
Pour les alliages soumis à un traitement thermique, un vieillissement maximal est réalisé à 180 °C, bien que l'index de la plus haute qualité corresponde à la température du vieillissement 155 °C, et ce est pour tous les alliages étudiés. En conséquence, 155 °C peut être considéré comme traitement de vieillissement optimal. À 0.5% Mn, la phase P-Fe forme quand le contenu de Fe est au-dessus de 0.75%, entraînant une diminution massive au niveau des propriétés mécaniques. Le même résultat est obtenu quand les niveaux du Fe et du Mn sont augmentés au delà de 0.75%, en raison de la formation du résidu « sludge ». D'autre part, les propriétés mécaniques des alliages contenant du cuivre sont affectées légèrement aux niveaux élevés du magnésium en raison de la formation de la phase AlsCu2Mg8SÍ6 qui diminue la quantité de magnésium libre disponible pour former la phase d'AkCuMg. Le contour courbé de la corrélation entre 1TJTS (limite ultime) et l'allongement observé pour tous les alliages soumis au vieillissement reflète la transition d'une forte corrélation dans les conditions sous-vieillissement et vieillissement maximal liée à la faible corrélation associée avec la condition de survieillissement. L'énergie d'impact de Charpy de l'alliage Al-10.8%Si est influencée par sa microstructure qui dépend fortement de la composition d'alliage. La morphologie du silicium fibreux en alliages modifiés par le Sr augmente la dureté en raison de son effet fondamental sur le déclenchement des fissures et la résistance de propagation de fissure. Dans les alliages contenant ?1% de fer et 1% ou 0.5% Mn, l'addition du fer mène à une plus grande précipitation du résidu et des plaquettes p-Fe, respectivement; ces particules intermétalliques agissent en tant qu'emplacements de déclenchement de fissures et réduisent les propriétés d'impact considérablement. Dans les alliages contenant des niveaux élevés en cuivre, le niveau de Cu accru abaisse les propriétés d'impact de manière significative, puisque le comportement de rupture est maintenant également influencé par la phase d'A^Cu en plus des particules de silicium. Indépendamment de la composition d'alliage, le tracé combiné de l'énergie d'impact et le pourcentage d'élongation montre des relations linéaires pour tous les alliages, que ce soit dans la condition tel que coulé ou traité thermiquement.
Des modèles de régression multiples ont été développés afin de prévoir l'influence des variations compositionnelles sur les propriétés mécaniques (L.U, L.É, %A, et Ex) de l'alliage Al-10.8%Si soumis à un traitement T6. Ces équations, sous forme de formules d'interpolation, fournissent des informations sur l'effet conjugué aussi bien que sur les effets conjugués de changer individuellement les additions d'élément d'alliage faites à l'alliage. Les équations montrent que l'augmentation de la teneur de Cu, de Mn et de Mg résulte de l'augmentation de la dureté et de la résistance à la traction. Le cuivre apporte la contribution la plus élevée de chacun des trois éléments à la résistance pour la gamme de composition étudiée, alors que le fer a des effets délétères sur les propriétés mécaniques de l'alliage. Chacun des quatre éléments réduit l'élongation et la dureté, avec du Cu ayant l'effet le plus intense. L'analyse détaillée indique que l'interaction des coefficients ne semble pas contribuer de manière significative aux propriétés mécaniques des alliages. L'exactitude des équations a été vérifiée contre les résultats expérimentaux dans les gammes de la variation des variables étudiées. Ces équations peuvent être employées pour prévoir les propriétés d'alliage dans ces marges de variation.
En ce qui concerne l'addition des éléments de trace, les résultats prouvent que l'addition individuelle du Pb n'a aucun effet significatif sur la microstructure et les propriétés mécaniques de l'alliage Al-10.8%Si dans les deux conditions, tel que coulé et traité thermiquement. L'addition du Bi contrecarre l'effet de modification du Sr, menant à un grossissement notable des particules eutectiques de silicium, tandis que des précipités en étain comme [3-Sn sont observés dans le réseau d'A^Cu quand Fétain est ajouté individuellement à l'alliage. Une addition combinée de Pb et le Bi à l'alliage Al-10.8%Si entraîne une précipitation en tant que des cristaux primaires de Bi enveloppés par la phase PbaBi et fournit de meilleures propriétés mécaniques dans l'alliage tel que coulé et vieilli artificiellement que l'addition combinée du Bi et du Sn.
Une étude séparée a été effectuée sur les alliages B319.2 et A356.2 modifiés et affinés afin d'étudier l'effet de l'ajout de Sn en faibles quantités (moins de 0.15 % en poids) sur la microstracture, et par conséquent sur la performance d'alliage sous différentes conditions de traitement thermique (T5 et T6), aussi bien que dans la condition de tel que coulé. Les barres d'essai ont été divisées en trois jeux : un ensemble a été maintenu dans la condition tel que coulé, le deuxième ensemble était soumis à un traitement thermique de mise en solution à 495 °C/8 h pour les alliages B319.2 et à 540 °C/8 h pour les alliages A356.2, puis les alliages ont été trempés dans l'eau chaude à 65 °C, suivi d'un vieillissement artificiel à 180 °C pendant 5 heures (c.-à-d. traitement thermique T6). Le troisième ensemble était soumis à un traitement thermique de type T5 à 175 °C pendant 10 heures. Les résultats expérimentaux prouvent que, dans l'alliage B319.2 l'alliage, les précipités de Sn sont de forme de particules de Sn (p-Sn) dans le réseau d'AbCu, et ils sont comme des particules minuscules (300 ~ 500 nm) de type Mg2Sn sur les particules eutectiques de silicium.
Cependant, dans l'alliage A356.2, Sn précipite principalement comme Mg2Sn sous la forme d'écriture chinoise. La ductilité et la dureté des alliages B319.2 et A356 tel que coulés sont sensibles aux variations du contenu de Sn, alors que la limite d'élasticité demeure pratiquement inchangée. La ductilité et la dureté plus élevées des alliages contenants du Sn dans la condition tel que coulé peuvent être attribuées principalement à l'état de contrainte-tension dans la matrice associée à la finesse des phases de Sn. Il peut être également observé que la dureté et la résistance des alliages B319.2 et A356.2 tel que coulé et soumis à un traitement thermique sont réduites légèrement par Sn, un fait qu'on pense qui est dû au ramollissement des phases en étain.
|
244 |
Affinement des grains des alliages Al-(0-17%)SiTahiri, Hicham January 2007 (has links) (PDF)
Grâce à leurs caractéristiques de basse masse volumique, de bas point de fusion, d'excellente coulabilité et de bonne résistance à la corrosion, les alliages aluminiumsilicium Al-Si sont intensivement employés dans diverses applications d'automobiles et même dans l'aérospatiale. Les pièces produites à partir de ces alliages s'étendent à plusieurs usages, à savoir, des blocs de moteur, des culasses et des roues.
De nombreux facteurs définissent la microstructure, les propriétés et la qualité de l'alliage. D'importance primaire sont la taille des grains, la dimension des cellules dendritiques ou encore l'espace interdendritique, et la forme et la distribution du mélange eutectique, qui est constitué principalement de silicium.
Une structure granulaire fine et équiaxe est toujours désirée puisque une taille de grain plus fine favorise une solidité améliorée de moulage en réduisant au minimum le phénomène de rétrécissement, le craquage à chaud et la porosité d'hydrogène. Pour réaliser l'affinage des grains, la manière la plus largement pratiquée est de présenter des noyaux de germination efficaces dans le métal liquide à l'aide des raffineurs de grain d'Al-Ti-B qui contiennent habituellement des germes actifs comme le TiAJb, T1B2, AIB2 ou encore (ALTi)B2. Quant à la modification de la morphologie du silicium eutectique de sa forme brute aciculaire à une forme fibreuse ou globulaire, elle est habituellement réalisée par l'addition du strontium (Sr), et ce dans le but d'améliorer la ductilité de l'alliage.
Cependant, lors de la réalisation de l'affinage des grams et de la modification du silicium eutectique, de fortes interactions s'établissent entre certains éléments de l'affineur de grain (principalement le bore) et l'agent de modification (Sr). Cette affinité mutuelle entre le strontium et le bore affecte directement le degré d'affinage des grains d'aluminium et le degré de modification des particules eutectiques de silicium.
L'objectif du travail actuel est d'établir, d'une part les mécanismes conventionnels de l'affinage des grains, et d'autre part, l'effet de l'interaction affinagemodification dans les alliages Al-Si sur la réalisation d'affinage des grains et la modification du silicium eutectique. Pour ce but, de l'aluminium pur, l'alliage hypoeutectique A356 (~ 7%Si) et l'alliage hypereutectique A390 (~ 17%Si) ont été utilisés tout au long de ce travail de recherche. Divers alliages mères (affineurs de grain) ont été utilisés, à savoir, Al-10%Ti, Al-5%Ti-l%B, Al-2.5%Ti-2.5%B, Al-1.7%Ti- 1.4%B et A1-4%B. Après la préparation du métal liquide, diverses concentrations de ces alliages mères ont été ajoutées au bain liquide selon l'objectif désiré. Quant à l'ajout du strontium (Sr), l'addition de cet élément a été effectuée par l'alliage mère Al-10%Sr. Les différentes coulées ont été réalisées dans un moule en graphite préchauffé avec un taux de refroidissement de l'ordre de 0.8 °C/s. Le métal liquide a été porté à deux températures de surchauffe, 750 °C & 950 °C.
Les effets de ces variables sur la température de nucléation et la morphologie de la phase dendritique a-Al, et sur la modification du silicium eutectique ont été examinés en détail. Afin d'examiner le matériau obtenu, plusieurs techniques ont été employées pour la caractérisation microstructurale et l'identification des phases. Ces techniques incluent l'analyse thermique, la microscopie optique, la métallographie quantitative à l'aide de la technique d'analyse d'images, l'analyse par microsonde, la cartographie par rayons X, la spectroscopie de longueur d'onde (WDS), ainsi que les rayons X à énergie dispersive (EDX) en plus de l'électron diffusé.
L'introduction de titane sous forme Al-10%Ti ou de poudre mène à la formation d'intermétalliques ultrafins de type (ALSi^Ti Ces derniers constituent des emplacements de nucléation pour la phase a-Al. Lorsqu'il est ajouté au métal liquide, l'alliage mère Âl- 4%B montre une puissance remarquable en comparaison avec d'autres affineurs de grain. Pour cet alliage mère, le titane résiduel dans l'alliage A356 réagit avec le bore B pour former TIB2 qui, par la suite, agit comme un germe actif à côté de AIB2 pour la phase a- Al.
L'addition du strontium et de faffineur de grain Al-5%Ti-l%B montre une certaine affinité entre le modificateur et le bore. Cette affinité, limitée par la surface extérieure des TiBi, désactive partiellement l'effet de l'affineur puisque la taille granulaire minimum est obtenue pour une teneur en Ti de 0,2 à 0.3% en poids, comparativement à celle obtenue lors de l'addition de Al-10%Ti et du strontium. La microstmcture de l'eutectique est constituée à la fois de flocons et des particules fibreuses.
La présence du strontium et du bore affecte complètement la microstructure del'alliage. En effet, un atome de Sr s'unit avec 6 atomes de B pour former un composé dont la formule stoechiométrique est de type SrBô, désactivant par conséquent la modification et la réduction de la taille des grains. Une forte relation existe entre l'addition en B et le niveau de récupération du Sr. En générai ce niveau décroît considérablement avec l'augmentation progressive en B dans le métal liquide.
L'introduction de AIB2 sous forme A1-4%B dans les alliages contenant des traces en titane mène à la réaction entre le bore et le titane pour former des T1B2. L'affinage des grains est réalisé principalement grâce à TiBa plutôt qu'à AIB2, ou bien les deux, dépeodamment de la teneur en titane dans l'alliage donné. Dans la présence du strontium, le bore réagit avec le strontium pour former des composés de type SrBe qui est supposé un _affineur très faible. L'affinité entre le titane et le bore est plus élevée que l'affinité existant entre le bore et le strontium. Notons aussi que le B ne réagit pas avec le Si à l'opposé du titane, cependant, il mène à de meilleurs résultats.
Des additions plus élevés de chaque affineur et des temps de maintien longs du bain liquide mènent à l'agglomération et la décantation des particules intermétalliques primaires, provoquant des effets délétères sur l'affinage et sur la modification, et par conséquent sur les propriétés mécaniques.
Après addition 0.1 %Ti en poids sous forme Al-10%Ti, la taille granulaire dans l'alliage A356, coulé après 10 min de temps de maintien, diminue d'environ 1850 p,m à ~ 600 (lira, équivalent à un pourcentage de réduction de 67%. La même addition en Ti dans l'alliage faypereutectique 390, coulé après 10 min, réduit sa taille initiale variant de 1450 à 1600 um, à environ 1200 um, équivalent à un pourcentage de réduction de 25% seulement.
La présence du silicium en excès dans les alliages Al-Si entraîne une forte interaction entre le titane et le silicium. Cette importante affinité mène à la formation des phases de type (Al,Si)2Ti affaiblissant les opportunités de nucléation de la phase dendritique et diminuant par conséquent le degré d'affinage des grains. Cette phase de disiliciure de titane a tendance à se former davantage quand le métal liquide est maintenu pour de longues périodes.
Comme les sites de nucléation (AljTi) changent en composition en fonction du pourcentage du Si dans l'alliage, le terme "empoisonnement" rencontré fréquemment dans diverses études et recherches, pour expliquer la perte ou affaiblissement du pouvoir d'un tel affineur, est mal employé. Puisque ces sites subissent une transformation phasique (AI3TI ?> (Al,SifoTi -» (Al,Si)2Ti)5 leur efficacité pour micléer la phase préeutectique a-Al s'affaiblit. Cet affaiblissement est dû principalement à une nouvelle structure cristalline adoptée par ces germes actifs. D'où l'écartement du terme "empoisonnement" est sollicité dans la description d'un affaiblissement ou effacement du pouvoir d'affineur de grain.
À l'opposé des observations concernant les paramètres caractérisant le silicium eutectique dans l'alliage hypoeutectique A356, l'addition combinée en Sr et en B semble avoir un meilleur impact sur les paramètres de la phase eutectique du silicium dans l'alliage hypereutectique. Ceci a été remarqué puisque les températures de nucléation et de croissance du Si eutectique sont basses avec une sur&sion importante. Ce qui laisse à prédire qu'une addition progressive en B dans les alliages à haute concentration en Si, en augmentant le temps de maintien du métal liquide, peut occasionner une certaine modification en présence du strontium.
|
245 |
Caractérisation de la fraction solide dans les lopins semi-solides produits par le procédé SEEDColbert, Josée January 2007 (has links) (PDF)
Depuis quelques années, les recherches qui portent sur les procédés de mise en forme par voie semi-solide ne cessent d'augmenter. Cette popularité s'explique par les nombreux avantages que procure ce type de moulage par rapport au moulage traditionnel en phase liquide. Le procédé SEED (Swirled Enthalpy Equilibration Device) est une méthode de mise en forme de l'aluminium semi-solide actuellement développée par Alcan International Limited et le Centre des technologies de l'aluminium. Ce procédé utilise la masse thermique d'un creuset pour absorber une quantité définie de chaleur d'un lopin pour qu'il atteigne la température et la fraction solide voulues. L'avantage principal du procédé SEED est qu'il ne requiert pas de contrôle de températures sophistiqué. Le transfert de chaleur peut être aisément contrôlé par la masse et le matériau du creuset.
L'objectif des travaux réalisés dans le cadre de cette maîtrise concerne l'évolution de la fraction solide en fonction de la température dans les lopins semi-solides produits par le procédé SEED. Comme les lopins sont destinés au moulage sous pression, il est essentiel de bien connaître les propriétés d'écoulement de la pâte pour obtenir des pièces ayant de bonnes propriétés mécaniques. Or, les propriétés rhéologiques de la pâte dépendent fortement de la fraction solide, d'où l'intérêt de la caractériser. Deux modèles théoriques sont fréquemment utilisés pour connaître la fraction solide en fonction de la température, soit le modèle de Scheil et celui de solidification à l'équilibre. Par contre, ces modèles demeurent des approximations et il est impossible de dire jusqu'à quel point l'évolution de la fraction solide dans les lopins semi-solides produits par le procédé SEED concorde avec ces modèles. Pour caractériser l'évolution de la fraction solide de l'aluminium, quatre approches ont été utilisées.
Le logiciel Thermo-Cale a d'abord été utilisé pour tracer l'évolution de Penthalpie et de la fraction solide pour un alliage d'aluminium A356 en utilisant les modèles de Scheil et de solidification à l'équilibre. Ensuite, Dictra a été utilisé pour tracer les mêmes courbes, mais cette fois en imposant un taux de refroidissement et en basant les calculs sur la vitesse de diffusion des atomes dans l'alliage. Les résultats de ses calculs ont permis d'obtenir les courbes théoriques d'enthalpie et de fraction solide prédites par les modèles.
Deux types de calorimètre ont été utilisés. D'abord, un calorimètre à pression constante a été fabriqué pour connaître la quantité de chaleur contenue dans un lopin. Ensuite, un calorimètre à balayage différentiel a été utilisé pour mesurer l'évolution de l'énergie lors de la réaction de solidification d'une petite masse d'aluminium. Ces mesures ont ensuite permis de connaître la fraction solide pendant la réaction. Les résultats obtenus concordent bien avec les prédictions fournies par le logiciel Thermo-Cale.
Une première méthode expérimentale directement appliquée au procédé SEED a ensuite été employée. Cette démarche consiste à prélever des échantillons de pâte semisolide à différents moments lors d'un cycle de production des lopins et à les refroidir très rapidement afin de figer la microstructure. Différentes méthodes d'échantillonnage ont été testées afin d'identifier la démarche la plus efficace et celle permettant la solidification la plus rapide. Plusieurs obstacles ont été rencontrés et il a été très difficile d'obtenir des échantillons représentatifs de la pâte. L'étude de la microstructure par analyse d'image des échantillons permet normalement de quantifier la fraction solide. Il s'est par contre avéré très difficile de distinguer la phase primaire qui s'est solidifiée en cours de procédé de la partie liquide qui s'est solidifiée pendant la trempe. La principale raison qui explique les difficultés rencontrées est associée à la morphologie et la taille des particules solides qui, dû à un manque de temps de maintien dans la région semi-solide, n'ont pas eu le temps d'évoluer en forme de globules et de grossir suffisamment pour se distinguer facilement de la phase secondaire solidifiée pendant la trempe. La fraction solide de la pâte n'a donc pas pu être quantifiée par cette méthode. L'analyse thermique a finalement permis de connaître l'évolution de la fraction solide de la pâte produite par le procédé SEED. Des mesures de températures provenant de thermocouples insérés dans l'aluminium semi-solide et à la surface du creuset lors de la solidification des lopins ont d'abord été prises. Ensuite, un bilan énergétique a permis de connaître l'évolution de l'enthalpie du système. Finalement, la fraction solide a pu être déterminée en faisant l'hypothèse que la fraction solidifiée est proportionnelle à la fraction d'énergie dégagée. Il est important de souligner qu'habituellement l'analyse thermique utilise le concept de courbe de base pour isoler l'énergie de la réaction de solidification.
L'analyse thermique développée dans le cadre de ces travaux utilise une approche complètement nouvelle qui s'affranchit de l'utilisation de la courbe de base. Les résultats obtenus par analyse thermique ont permis de constater que l'évolution de la fraction solide concorde avec les prédictions du modèle de Scheil.
Finalement, une démarche permettant de prédire la fraction solide après le drainage dans le procédé SEED a été développée. Suite aux résultats obtenus par analyse thermique, il est possible d'utiliser la relation de Scheil pour prédire la fraction solide des lopins produits par le procédé SEED avant le drainage. Par ailleurs, la période de drainage est plus complexe et rien ne permet d'affirmer que la relation de Scheil s'applique toujours. Pendant le drainage, trois facteurs contribuent à faire augmenter la fraction solide, soit la masse drainée, la diminution de la température et la modification de la composition du lopin. Deux cas limites théoriques basés sur des hypothèses différentes ont été étudiés pour calculer l'intervalle dans lequel la fraction solide finale de la pâte se trouve.
|
246 |
Phénomène de fusion locale des phases du cuivre dans les alliages Al-Si-Cu-MgHan, Yumei January 2007 (has links) (PDF)
Les alliages aluminium-silicium-cuivre-magnésium de type 319 sont largement répandus dans la production des blocs de moteur grâce à leur résistance élevée à la fatigue. Ces alliages qui sont thermiquement traitables appartiennent à la classe des alliages d'aluminium dont les propriétés peuvent être améliorées en utilisant un traitement thermique spécifique comportant un traitement thermique de mise en solution, suivi d'une trempe et d'un vieillissement. Le but du traitement de mise en solution est de maximiser la quantité des corps dissous durcissants (Cu et Mg) dans la solution solide en matrice d'aluminium. Dans le cas des alliages 319, la température de solution doit être gardée la plus proche possible de la température eutectique du cuivre, à un niveau au-dessous du maximum pour éviter la surchauffe et fondre, par conséquent, partiellement la phase d'A^Cu (nommée fusion locale). Le traitement de mise en solution peut être effectué dans des étapes simples ou multiples. Puisque le traitement à une seule étape est habituellement limité à 495 °C, pour éviter la fusion locale, il ne peut être suffisant ni pour maximiser la dissolution des phases riches en cuivre, ni pour modifier la morphologie des particules de silicium, deux considérations importantes en ce qui concerne l'amélioration des propriétés d'alliage. On a donc proposé des traitements de mise en solution en deux étapes et en étapes multiples pour rectifier ce problème.
Ce travail de recherche a été réalisé sur les alliages Al-Si-Cu-Mg de type 319 pour étudier le rôle du traitement thermique de mise en solution sur la dissolution des phases contenant du cuivre (O1AI2 et AlsMggCuaSiô) dans les alliages 319 contenant des niveaux de magnésium différents, 0, 0.3 et 0.6 % en poids, pour déterminer le traitement thermique de mise solution optimum en ce qui concerne l'occurrence de la fusion locale par rapport aux propriétés d'alliage. Deux séries d'alliages ont été étudiées. Une série d'alliages expérimentaux Al-7%Si-3.5%Cu contenant des niveaux de magnésium de 0, 0.3, et 0.6 % en poids. Cette série a été préparée au laboratoire en utilisant des éléments purs. La deuxième série a été basée sur l'alliage industriel B319 (contenant 0.3% en Mg), où le niveau de magnésium a été augmenté jusqu'à 0.6% en poids en ajoutant du Mg pur au métal liquide. Afin d'étudier l'effet de la modification, le strontium a été ajouté par quantité de 150 ppm aux alliages expérimentaux et industriels, pour fournir un ensemble d'alliages modifiés par le strontium. Ainsi, un total de dix alliages a été étudié dans ce cas.
Pour chaque alliage, cent barreaux pour les essais de traction ont été préparés en utilisant un moule métallique permanent de type ASTM B-108. Chaque coulée a fourni deux barreaux pour l'essai. Les barreaux de traction ont été traités thermiquement par divers traitements thermiques de mise en solution, c.-à-d. quatre étapes simples, huit étapes doubles, et quatre étapes triples de traitements de mise en solution. Les températures de mise en solution utilisés étaient 450°C, 490°C, 500°C et 520°C, pendant des temps de mise en solution de 4h et de 8h, dans diverses combinaisons de ces températures et périodes. Après le traitement thermique de mise en solution, toutes les barreaux ont été trempés dans l'eau chaude (60°C), suivi d'un vieillissement à 155°C pour une période de 5h. Les réactions se produisant pendant la solidification ont été surveillées en utilisant l'analyse thermique, alors que la dissolution des phases de cuivre était analysée en utilisant un système optique d'analyseur d'image. Une microsonde électronique (EPMA) couplé aux rayons X à énergie dispersive (EDX) et de la spectroscopie de longueur d'onde (WDS) ont été utilisés.
Les résultats montrent que dans la condition de tel que coulé, la ségrégation du cuivre se produit aux joints de grain, et la présence du strontium ou du magnésium peut empirer la ségrégation. Quand le magnésium et le strontium sont ajoutés en même temps, cependant, la ségrégation est affaiblie dans une certaine mesure comparée à leur addition individuelle. Après le traitement thermique de mise en solution, et particulièrement dans les alliages modifiés par le strontium, le cuivre commence à se distribuer à travers les dendrites aussi bien que dans la matrice, avec l'augmentation du temps de mise en solution et de la température. La quantité non dissoute d'AlaCu diminue et le cuivre augmente dans la matrice, atteignant un maximum après un traitement thermique de mise solution de 490° durant 8h. L'addition du Mg dans les alliages 319 (expérimentaux ou industriels) mène à un point de fusion bas et une phase complexe insoluble de type AlsMggCuaSig. L'augmentation d'addition de magnésium à 0.6 % en poids augmente la fraction volumique de cette phase et les précipitations pré-eutectique et post-eutectique AlsMggCuaSiô sont observées. Dans les traitements thermiques de mise en solution où la dernière température utilisée excède le point de fusion de la phase AlsMggCuaSie, la fusion locale de cette phase se produit, entraînant une détérioration grave des propriétés mécaniques d'alliage.
La présence du Sr a comme conséquence la modification de la morphologie des particules de silicium eutectique d'une forme aciculaire dans les alliages non modifiés à une forme fine et fibreuse dans les alliages modifiés par le strontium. On observe également une dépression correspondante à la température Al-Si eutectique. Cependant, le strontium mène également à la ségrégation de la phase de cuivre dans des secteurs loin des régions eutectiques de silicium, de sorte que la phase d'AlaCu a une tendance à précipiter dans une forme de blocs plus massifs plutôt que dans sa forme eutectique plus fine. Ce changement de la morphologie de la phase de cuivre ralentit son taux de dissolution pendant le traitement thermique de mise en solution de sorte que quand (a) le temps du traitement de mise en solution de la première étape n'est pas suffisamment long pour dissoudre les particules d'A^Cu, et (b) la température du traitement de la deuxième étape est plus haute que le point de fusion d'A^Cu, la fusion locale aura lieu, et en raison du rétrécissement de volume pendant la trempe, on observera la formation de porosité. L'addition du Sr peut occasionner également des augmentations du pourcentage surfacique de porosité et de la longueur des pores, en particulier à la température de traitement de mise en solution de 520 °C.
Les propriétés de traction, c.-à-d, les valeurs de la limite ultime (L.U), de la limite élastique (L.É), de l'allongement à la rupture (A%) et de l'index de qualité (Q) obtenues montrent que l'addition du magnésium aux alliages expérimentaux 319 mène à une augmentation de la limite d'élasticité et de la limite ultime, mais une dégradation dans l'allongement à la rupture. Dans les alliages non modifiés, la perte d'élongation est balancée par l'augmentation de la résistance, ainsi les valeurs de Q sont augmentées. Dans les alliages expérimentaux modifiés, la dégradation de l'élongation n'est pas équilibrée par l'augmentation de la résistance, ainsi les valeurs de Q sont diminuées. Le magnésium augmente la limite élastique (L.É) davantage que la limite ultime (L.U). La combinaison optimum du Mg et du Sr est de 0.3% de Mg avec 150 ppm Sr. Les propriétés de traction correspondantes dans la condition de tel que coulé sont 260 MPa (L.É), 326 MPa (L.U), 1.50% (A%), 352 MPa (Q), montrant une augmentation de 79% et 40% pour L.É et L.U, respectivement, une diminution de l'élongation de 38%, et une augmentation de l'index de qualité de 21% comparé à l'alliage de base. Une augmentation ultérieure du contenu de magnésium mène à la dégradation des propriétés de traction.
Pour les alliages étudiés, en l'absence du magnésium, le traitement thermique de mise en solution recommandé est 45Û°C/4h + 500°C/4h + 52Q°C/4h, pour lequel les propriétés de traction et l'index de qualité correspondants sont 385 MPa (L.U), 240 MPa (L.É), 5.25% (A%), et 493 MPa (Q). Dans les alliages contenants du Mg, le traitement thermique de mise solution optimum est 490°C/8h + 520°C/4h; les propriétés de traction correspondantes sont 445 MPa (L.U), 334 MPa (L.É), 4.24% (A%), et 539 MPa (Q), respectivement. Dans le cas des alliages industriels, les éléments de trace tels que le Ni, le Fe et le C, tendent à former autres intermétalliques de cuivre qui, à leur tour, fournissent des propriétés mécaniques plus élevées que les alliages expérimentaux contenant le même niveau du magnésium.
|
247 |
Developing neural network models to predict ice accretion type and rate on overhead transmission lines = Développement de réseaux de neurone[s] pour la prédiction du type et du taux de glace accumulée sur les lignes aériennes de transport d'énergie électriqueMaralbashi-Zamini, Sona January 2007 (has links) (PDF)
Un grand nombre de lignes aériennes de transport d'énergie électrique sont exposées à la glace atmosphérique dans les régions nordiques éloignées. Des modèles appropriés pour estimer les quantités de glaces sur les lignes de transport s'avèrent très précieux pour aboutir à la conception d'équipement fiable capable d'opérer dans cet environnement. Pour les compagnies d "électricité, les prédictions de charge de glace peuvent aider à déterminer les impacts opérationnels sur leur équipement, de sorte que des dommages sérieux puissent être évités.
La présente recherche, effectuée dans le cadre des travaux de la Chaire industrielle CRSNG/HYDRO-QUÉBEC/UQAC sur le givrage atmosphérique des équipements des réseaux électriques (CIGELE), se concentre sur : (i) le développement des modèles pour prédire le type de glace accumulé sur les structures exposées et (ii) le développement des modèles empiriques pour prédire le taux d'augmentation de glace sur des lignes de transport.
Dans le but de réaliser une classification de type de glace en utilisant les réseaux de neurones, un ensemble de données a été créé en se basant sur des fonctions extraites à partir de la référence de la Commission Électrotechnique Internationale (CEI) qui relie le type de glace aux variables de la température et de la vitesse de vent. Le réseau Perceptron multicouches (MLP) a été utilisé et différentes caractéristiques ont été examinées afin de trouver l'architecture optimale. Ce modèle initial de deux entrées a été amélioré en ajoutant un troisième paramètre qui est la taille des gouttelettes. Les modèles développés donnent un taux de reconnaissance de 100% avec les données d'entraînement et plus de 99% avec les données de test. Les résultats obtenus sont prometteurs et prouvent que les modèles basés sur les réseaux de neurones peuvent être une bonne alternative pour la classification de type de glace à condition que les fonctions utilisées pour générer les données d'entraînement soient assez précises.
Dans la deuxième partie de cette étude, trois modèles ont été développés afin de prédire le taux d'augmentation de glace sur les lignes de transport dans des situations correspondantes. Les données utilisées pour entraîner les réseaux de neurones proviennent du site du Mont Bélair qui fait partie du système de surveillance en temps réel SYGIVRE d'Hydro-Québec. Le premier modèle neural a été entraîné avec les données des trois phases d'un événement de givrage, soit la phase d'accrétion, la phase de persistance et la phase de délestage. Le deuxième modèle a été développé pour le givrage humide et a été entraîné avec les trois phases des événements produits pendant les précipitations. Finalement, le troisième modèle développé a été entraîné avec seulement la phase d'accrétion d'un événement de givrage. Pour établir ces modèles, quatre architectures de réseaux de neurones comprenant MLP avec une couche cachée, MLP avec deux couches cachées, le réseau récurrent Elman et Jordan ainsi que deux cents différentes configurations pour chaque architecture ont été examinées et comparées. En outre, pour chaque configuration, deux styles d'entraînement soit par batch ou incrémental ont été examinés. Le nombre d'entrées prises des incréments de temps antérieurs, est un autre paramètre qui a été étudié afin de déterminer la conception optimale.
Comme conclusion générale, le réseau récurrent Jordan avec un délai de trois unités était la meilleure architecture et ceci pour les trois modèles. Les caractéristiques et l'avantage principaux de cette architecture donnant les meilleurs résultats, c'est qu'elle utilise les quantités de glace estimée dans le passé pour estimer celle en cours. Donc, le réseau en question se caractérise par une boucle récurrente. Dans le cas de la comparaison entre l'efficacité de ces trois modèles prédictifs, on a observé que le modèle développé en se servant des données les plus homogènes, c'est-à-dire seulement les données de la phase d'accrétion de glace, est le meilleur parmi ces trois modèles puisqu'il peut généraliser et estimer étroitement les charges de glace extrême. La performance des modèles développés démontre que les modèles établis avec l'architecture Jordan de réseaux de neurones peuvent apporter une contribution importante dans le développement des modèles empiriques précis pour estimer les charges de glace des lignes de transport d'énergie, à condition qu'un nombre raisonnable de données d'entraînement soit utilisé et que les données allant aux réseaux soient soigneusement choisies.
|
248 |
Ice shedding from cables and conductors : a cracking model of atmospheric ice = Délestage de glace des câbles et des conducteurs : un modèle de rupture fragile de la glace atmosphériqueKermani Koosheh, Majid January 2007 (has links) (PDF)
Le givrage atmosphérique est à la source de sérieux problèmes d'origine électrique et mécanique sur les réseaux de transport et de distribution de l'énergie électrique. Le délestage naturel de glace de câbles et conducteurs, une conséquence du givrage atmosphérique, est à la source de nombreux problèmes, d'où la nécessité de l'étude de la rupture fragile de la glace atmosphérique. Des pannes majeures sur les réseaux électriques pendant les tempêtes de verglas seraient évitables par l'amélioration des méthodes de déglaçage et de prévention du givrage. Pour ce faire, il est nécessaire d'approfondir nos connaissances sur les propriétés mécaniques de la glace atmosphérique.
Les objectifs de cette recherche, dans le cadre de la problématique générale du délestage de glace, sont l'étude et l'estimation des contraintes s'appliquant à la glace atmosphérique accumulée sur un câble, la mesure des de ses propriétés mécaniques et le développement d'un modèle de rupture fragile de la glace atmosphérique.
Les forces exercées par le vent et la charge de glace sont les facteurs les plus importants dans le délestage. La force du vent crée trois types d'oscillation sur les lignes de transport d'énergie : galop (haute amplitude, basse fréquence), vibration éolienne (basse amplitude, haute fréquence) et oscillation de sillage (wake-induced oscillation). Le changement des caractéristiques aérodynamiques du câble cause des oscillations de grande amplitude (galop). Au cours de la vibration éoîienne, l'alternance de vortex causés par le vent sur le câble est la cause de cette vibration. L'oscillation de sillage se produit dans les conjoncteurs empaquetés et à une amplitude moyenne. La charge de la glace peut causer sa fissuration ou accélérer sa rupture en augmentant l'inertie de masse. Quelques facteurs indirects fournissent des conditions appropriées pour la rupture de la glace par réduction de force ou élimination de l'adhérence au câble.
Afin d'estimer les contraintes développées dans la glace accumulée sur un câble pendant le galop ou la vibration éolienne, deux modèles d'éléments finis ont été développés. La vibration éolienne et celle du galop sur un câble recouvert de glace ont été simulées pour déterminer les données de déplacement et de charge, qui servent d'intrants pour ces modèles. Les équations de mouvement du câble ont été appliquées à un câble recouvert de glace et résolues avec MATLAB pour obtenir des séries temporelles des mouvements du câble, des forces aérodynamiques, de la tension horizontale additionnelle agissant sur le câble pendant la vibration et le moment causé par le retour élastique. Le modèle ABAQUS a indiqué que, au cours du galop, les contraintes les plus élevées dans le sens du diamètre vertical de la glace sont atteintes lorsque le point médian du câble se situe aux positions les plus élevées et les plus basses de sa trajectoire.
Pour étudier la morphologie des grains et des bulles d'air de la glace atmosphérique, la glace a été accumulée sur un cylindre rotatif dans la soufflerie réfrigérée du CIGELE. Pour l'accumulation de la glace atmosphérique, on a utilisé une teneur en eau liquide de 2,5 g/m 3, une vitesse du vent de 10 m/s, de même que trois températures d'accumulation de -6 °C, - 10 °C et -20 °C, L'étude de minces sections de glace atmosphérique a indiqué que la taille des grains de glace diminue avec la température d'accumulation de la glace. La taille moyenne des grains de glace atmosphérique est approximativement de 1.5 mm, 0.5 mm et de 0.4 mm pour la glace accumulée à -6 °C, -10 °C et -20 °C, respectivement. Pour des épaisseurs de glace plus grandes que 2 mm, les grains sont allongés et perpendiculaires à l'axe du cylindre, pour la glace accumulée à -10 °C et -6 °C. Les expériences sur les effets du champ électrique à haute tension sur la glace atmosphérique confirment que la présence d'un champ électrique à haute tension affecte la structure, la densité et la quantité de la glace accumulée sur les conducteurs.
La résistance à la compression de la glace atmosphérique augmente avec la diminution de la température d'essai. En outre, on a constaté que la résistance de la glace augmente avec l'augmentation du taux de déformation jusqu'à une valeur de 10 "3 s ~l, et puis diminue à des taux plus élevés de contrainte. La résistance à la compression de la glace atmosphérique augmente également avec la décroissance de la température d'accumulation. À des taux plus élevés de contrainte, cependant, dû à l'activation des fissures, la résistance à la compression de la glace accumulée à -20 °C est moindre que celle accumulée à -10 °C. Les résultats de la résistance à la flexion de la glace atmosphérique indiquent qu'aux taux inférieurs de contrainte, la résistance à la flexion de la glace augmente avec le décroissetnent de la température, mais qu'aucun effet de la température n'est observé aux taux plus élevés de contrainte. Dépendamment de la température, augmenter le taux de contrainte peut augmenter ou diminuer la résistance à la flexion de la glace atmosphérique. La résistance à la flexion de la glace atmosphérique accumulée à -10 °C s'est avérée plus élevée que celle des deux autres types de glace atmosphérique à cause de sa structure plus forte, de la plus petite taille de ses grains et de son manque relatif de cavités. Le module effectif de la glace atmosphérique s'est avéré augmenter avec l'augmentation des taux de déformation. Les résultats des essais de résistance à la rupture de la glace atmosphérique prouvent qu'elle diminue au fur et à mesure que la température de l'accumulation de glace décroît.
Pour l'étude du comportement de rupture fragile de la glace atmosphérique, un modèle ABAQUS a été développé pour analyser la progression d'une fissure quasi statique d'une poutre bidimensionnelle à trois-points. Des surfaces potentielles de fissuration ont été modelées en tant que surfaces de contact maîtresses et assujetties. On a assumé que les surfaces prédéterminées de fissuration sont partiellement collées au départ de sorte que les extrémités des cassures puissent être identifiées explicitement par ABAQUS/Standard.
Pour la modélisation du comportement de fissuration de la glace atmosphérique, le taux de contrainte a été décomposé en deux parties : taux de contrainte élastique et de fissuration. La contrainte élastique récupérable est associée à la déformation de treillis et liée à l'effort appliqué correspondant selon la loi de Hooke. La relation entre les contraintes locales et les contraintes de fissuration aux interfaces de fissures a été définie par une matrice de fissurations diagonale qui dépend de l'état des fissures existantes. Un critère de Rankine a été utilisé pour détecter le déclenchement des fissures. Les composantes de la matrice de fissurations diagonale ont été déterminées expérimentalement en tenant compte des propriétés mécaniques du matériel.
Un modèle tridimensionnel a été développé en utilisant ABAQUS pour étudier le comportement fragile et la fissuration de la glace atmosphérique. La force calculée par le modèle d'ABAQUS pour la rupture de la poutre est en écart de 2% par rapport à la valeur moyenne de la force de rupture observée en laboratoire. Toutefois, la deflection de la poutre à la rapture montre l'erreur de 19% par rapport à la glace testée. L'erreur est attribuée à l'inexactitude de la mesure du débattement du faisceau, aux différences entre les dimensions du faisceau et le module de Young des échantillons de glace et les valeurs correspondantes dans le modèle d'ABAQUS, et au manque d1 analyse de plasticité dans le modèle.
Un autre modèle basé sur ABAQUS a été développé pour simuler la fissuration fragile de la glace atmosphérique sur un câble. Les résultats montrent une erreur de 14% et de 47% dans la prévision de la force de rupture et de la deflection à la rupture, respectivement. A part les causes des erreurs mentionnées pour le modèle de trois-points, la différence entre la rigidité flexural du câble et le cylindre, la différence entre la forme de glace dans le modèle et les essais expérimentaux, et l'inégalité de la surface de la glace sont quelques sources des erreurs.
La rupture des poutres de glace lors des essais à trois-points a été étudiée en utilisant une caméra vidéo à haute vitesse. L'initiation, la propagation des fissures et la rupture mécanique de la glace atmosphérique ont été étudiées avec trois vitesses différentes de formation d'images (20000 IPS, 75000 IPS et 150000 IPS). Les vitesses maximales pour ces essais étaient de 360, 750 et 1275 m/s et les vitesses moyennes de fissuration était de 253, 427 et 563 m/s.
|
249 |
Étude temporelle et fréquentielle du courant de fuite des isolateurs de poste recouverts de glace en vue du développement d'un système de surveillance et de prédiction en temps réel du contournement électriqueMeghnefi, Fethi January 2007 (has links) (PDF)
Les isolateurs constituent des éléments essentiels dans le bon fonctionnement des réseaux d'énergie électrique. Cependant, l'accumulation de glace sur leur surface peut entraîner une diminution de leur tenue diélectrique pouvant conduire à des contournements électriques considérés comme des phénomènes extrêmement complexes et dangereux. Dans ce contexte, il peut s'avérer très utile, afin d'améliorer la fiabilité des réseaux électriques, de pouvoir prédire l'imminence de ces contournements.
D'après certains travaux réalisés sur les isolateurs pollués, il a été déterminé que le courant de fuite (CF) est une source évidente d'informations sur le comportement des isolateurs pollués. Celui-ci est de plus facilement mesurable en ligne. Ainsi, durant les périodes d'accumulation de glace, considérées comme des régimes de pollution sévère, une analyse détaillée du CF pourrait permettre d'identifier une signature du contoumement ou de la tenue des isolateurs recouverts de glace.
Cette étude est donc consacrée à l'analyse du courant de fuite mesuré sur les isolateurs recouverts de glace en périodes d'accumulation et en périodes de fonte. L'objectif est d'en recueillir des informations pouvant aider à mieux comprendre le comportement des isolateurs sous condition de givrage atmosphérique. Ces informations peuvent, par ailleurs nous renseigner sur la sévérité des précipitations et ainsi nous permettre de déterminer la probabilité de contoumement. Elles seraient par conséquent fort utiles dans l'élaboration d'un système de surveillance en temps réel pouvant prédire l'imminence du contoumement électrique des isolateurs opérant dans des postes stratégiques.
Les différents résultats de l'analyse du courant de fuite nous ont permis d'extraire, autant pour la période d'accumulation que pour celle de fonte, un nombre important d'informations à partir notamment de son amplitude et de sa forme d'onde. Ces mformations constituent des Outils indéniables dans l'étude du comportement électrique des isolateurs recouverts de glace.
L'analyse temporelle du CF réalisée au cours d'une accumulation de glace a montré que l'évolution temporelle de ce dernier passe par deux périodes distinctes. Le temps de transition ts entre ces deux périodes peut être facilement déterminé à l'aide du rapport de la valeur efficace sur la valeur moyenne du courant de fuite.
Les résultats obtenus ont montré que selon le type d'isolateur utilisé, le temps de la transition ts permet d'estimer la quantité de glace accumulée ainsi que le taux d'accumulation moyen si le début de l'accumulation est détecté.
De plus, il a été montré que l'influence de la conductivité de l'eau d'accumulation est significative après la formation du pont de glace entre les jupes de l'isolateur. Au cours de cette période, l'influence de la conductivité peut être facilement évaluée en étudiant les fluctuations de l'enveloppe du courant de fuite.
Les résultats obtenus montrent aussi que la distance entre les jupes de l'isolateur a une influence directe sur l'évolution temporelle de l'enveloppe du courant de fuite. Il a ainsi été constaté que la relation entre le pas de l'isolateur et le temps de transition est presque linéaire.
Au cours de la période de fonte, l'évolution du courant de fuite comporte deux régimes: un «transitoire» et un «permanent». Le premier est caractérisé par une augmentation progressive de la fréquence d'apparition des décharges électriques tandis que le second se caractérise par l'établissement permanent de l'arc électrique blanc et par une augmentation importante de l'amplitude du courant de faite.
Le passage du régime transitoire au régime permanent se fait pour une valeur crête du courant de faite située autour de 20 mA.
L'étude fréquentielle du CF a montré que le déphasage permet clairement de détecter le début de l'accumulation.
Enfin, en se basant sur l'étude de l'évolution de la fréquence d'apparition des décharges électriques au cours de la période de fonte, un outil numérique utilisant les réseaux de neurones a été développé. Celui-ci permet de générer un signal d'alerte indiquant l'approche de l'établissement de l'arc électrique.
|
250 |
Approche physique du développement de streamers positifs sur une surface de glace = Développement of positive streamers along an ice surface : a physical approachNdiaye, Ibrahima January 2007 (has links) (PDF)
Dans les réseaux d'énergie électriques, une décharge apparaît généralement comme une défaillance du système d'isolation. Les isolateurs qui en sont les principaux éléments en sont aussi les plus vulnérables car étant très sensibles aux facteurs environnementaux. Même s'ils sont conçus pour opérer dans les conditions climatiques les plus sévères, dans un contexte de givrage atmosphérique, l'accumulation de glace sur leur surface réduit grandement leur performance. Ils deviennent alors, le siège de décharges partielles et d'arcs de contournement à des niveaux de tension plus bas qu'en absence de glace. Leur relative vulnérabilité en présence de glace sous-tend un besoin croissant d'amélioration des connaissances sur les mécanismes physiques impliqués dans le développement d'une décharge sur une surface de glace. C'est dans ce contexte que la Chaire Industrielle CRSNG/Hydro- Québec/UQAC sur le givrage des équipements des réseaux électriques (CIGELE) a élaboré un vaste programme de recherche basé sur l'étude et l'observation des décharges visibles se propageant sur une surface de glace.
Les investigations entreprises dans ce projet se situent dans la continuité des travaux déjà amorcés à la CIGELE. Elles visaient à explorer davantage les caractéristiques des couronnes de streamers en présence de surface de glace et à interpréter les mécanismes physiques fondamentaux impliqués dans leur développement. La compréhension de ces mécanismes est l'ultime phase pour l'élaboration d'outils fiables de prédiction du contournement des isolateurs recouverts de glace. Elle facilitera en outre la conception d'isolateurs mieux adaptés au climat des régions froides, ce qui améliorera la fiabilité des réseaux de transport d'énergie dans des conditions de givrage atmosphérique.
Des techniques sophistiquées de détection et de photographie, impliquant notamment un photomultiplicateur et une caméra ultra rapide fonctionnant en mode image par image, ont été appliquées afin d'observer et d'étudier le développement des streamers. La forme des isolateurs réels étant très complexe, un modèle physique de géométrie simple (tige-plan), avec différentes valeurs d'intervalle d'air et de rayon de courbure de l'électrode HT, a été utilisé. Les investigations ont été limitées aux faibles intervalles pour lesquels, il n'y a aucune tendance de formation de leaders. Pour analyser l'influence du niveau de pollution de la glace, différentes valeurs de conductivité d'eau de congélation ont été utilisées. L'effet de la présence d'une couche quasi-liquide sur la surface de glace a été aussi étudié en faisant varier la température. Des paramètres tels la tension et le champ d'apparition des streamers, la durée de la décharge et la vitesse de propagation des streamers ont été analysés. Les courants associés aux streamers ont été mesurés pour étudier l'effet de la présence de charges surfaciques sur le développement de la décharge. Les investigations ont été aussi parallèlement effectuées en absence de glace (cas de l'air) pour comparer les caractéristiques des streamers dans ces conditions avec celles en présence de surface de glace.
Les résultats obtenus ont montré que la présence d'une surface de glace dans l'intervalle des électrodes modifiait considérablement les caractéristiques d'amorçage et de propagation des streamers. Il a été noté que l'augmentation de la conductivité de l'eau de congélation ou de la température induisait une réduction du champ d'apparition des streamers et accentuait leur vitesse de propagation. Ces observations ont été attaches à l'existence sur la surface de glace d'une couche quasi-liquide, dont les propriétés physiques et électriques sont très favorables au développement rapide des streamers. Cependant pour une glace faiblement polluée, les caractéristiques des streamers étaient comparables à celles dans l'air. Dans ce cas la décharge pouvait d'ailleurs se propager entièrement ou partiellement dans l'air, loin de la surface de glace. D'autre part, en présence de glace, les enregistrements de la caméra ont montré que la taille des couronnes était plus faible que dans l'air. De plus, contrairement au cas de l'air, la décharge pouvait s'amorcer dans la zone centrale de l'intervalle, loin des électrodes, et se compléter avec l'apparition d'un streamer indépendant dans la région de la cathode. Les charges déposées sur la surface de glace avant le début de la propagation ont justifié l'existence de tels phénomènes. En évaluant leur influence sur la distorsion du champ tangentiel, il a été établi qu'elles contribuaient à l'augmentation de la vitesse des streamers plus largement que la permittivité de la glace. L'analyse des mécanismes physiques intervenant dans le développement des streamers a permis de montrer aussi qu'en présence de surface de glace, les ionisations dues au champ du tangentiel intense en tête du streamer sont plus abondantes que les photo-ionisations dans l'air. Cette analyse a permis largement d'expliquer les niveaux de vitesses mesurées en présence de surface de glace ainsi que les observations sur l'aspect physique des streamers.
|
Page generated in 0.0454 seconds