• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of G-Jitter on Liquid Bridge Vibrations with & without Marangoni Convection

Wickramasinghe, Dhanuka Navodya 04 January 2012 (has links)
Effects of external vibrations (called g-jitter) on Marangoni convection in a liquid bridge were investigated on the International Space Station (ISS) and in ground-based experiments. In ISS, most dominant g-jitter frequency was noted to be ~110 Hz. ISS experiments suggested that the surface vibrations were mainly affected by the aspect ratio (length/diameter ratio), but not the imposed temperature gradient. Liquid bridge surface vibrations agreed well with Ichikawa et al.’s model. Ground-based experiments confirmed that increasing the volume ratio would cause the resonance frequency to increase. When a temperature difference was imposed between the upper and lower disks, for constant aspect and volume ratios, the resonance frequency tended to increase with the decreasing temperature difference. Furthermore, the shift in the resonance frequency due to a temperature difference, was found to be due to Marangoni convection and not due to reduced viscosity or surface tension of the fluid.
2

Effect of G-Jitter on Liquid Bridge Vibrations with & without Marangoni Convection

Wickramasinghe, Dhanuka Navodya 04 January 2012 (has links)
Effects of external vibrations (called g-jitter) on Marangoni convection in a liquid bridge were investigated on the International Space Station (ISS) and in ground-based experiments. In ISS, most dominant g-jitter frequency was noted to be ~110 Hz. ISS experiments suggested that the surface vibrations were mainly affected by the aspect ratio (length/diameter ratio), but not the imposed temperature gradient. Liquid bridge surface vibrations agreed well with Ichikawa et al.’s model. Ground-based experiments confirmed that increasing the volume ratio would cause the resonance frequency to increase. When a temperature difference was imposed between the upper and lower disks, for constant aspect and volume ratios, the resonance frequency tended to increase with the decreasing temperature difference. Furthermore, the shift in the resonance frequency due to a temperature difference, was found to be due to Marangoni convection and not due to reduced viscosity or surface tension of the fluid.
3

Lateral g-jitter effects on liquid motion and thermocapillary convection in an open square container under weightless condition

Chao, Liyung January 1991 (has links)
No description available.

Page generated in 0.0314 seconds