Spelling suggestions: "subject:"3space"" "subject:"despace""
1 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan 07 March 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
2 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan 07 March 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
3 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan 07 March 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
4 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan January 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
5 |
Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with DelayBiglands, Adrian Unknown Date
No description available.
|
Page generated in 0.0295 seconds