• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of footwear on balance and gait in older people

Menant, Jasmine Charlotte Christiane, Public Health & Community Medicine, Faculty of Medicine, UNSW January 2008 (has links)
Although footwear has been recognised as a risk factor for falls in older people, it remains unclear as to which features of shoes are beneficial or detrimental to balance. This project aimed to systematically investigate the effects of common shoe features, namely: an elevated heel, a soft sole, a hard sole, a flared sole, a bevelled heel, a high-collar and a tread sole, on balance and gait in older community-dwelling people. The experimental shoes were compared to standard shoes in three studies examining: (i) standing balance, leaning balance and stepping in 29 older people, (ii) centre of mass (COM)-base of support (BOS) margins, vertical and braking loading rates, and perceived shoe comfort and stability in 11 young and 15 older people walking on even and uneven surfaces, and (iii) temporal-spatial gait variables, pelvis acceleration, and gait termination in 10 young and 26 older people, on level, irregular and wet surfaces. Elevated heel shoes impaired overall performance in functional tests of balance and stepping. They were also perceived as lacking comfort and stability and led to a conservative walking pattern characterised by increased step width and double-support time, reduced braking and vertical loading rates and medio-lateral (ML) pelvis accelerations on various surfaces. Soft sole shoes increased lateral COM-BOS margin and step width, indicating reduced ML walking stability. When wearing these shoes, subjects had longer total stopping times and on the wet surface, smaller step lengths and shoe/floor angles at heel strike, suggesting a potential risk of slipping. When wearing high-collar shoes, subjects had better balance as demonstrated by small but significant increases in lateral COM-BOS margin, double-support time and step width, and decreases in ML pelvis accelerations on varying surfaces and in total stopping time on the wet surface. Shoes with hard, flared or tread soles or a bevelled heel did not affect balance. In conclusion, providing that they are fitted, have adequate fastening and perhaps a slip-resistant sole, shoes with a low square heel, a sole of medium hardness (shore A-40) and a high-collar provide the greatest stability for older people when walking on dry, wet and irregular surfaces.
2

Human gait analysis by gait pattern measurement and forward dynamic model combined with non linear feedback control /

Ko, Seung-uk. January 2007 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 86-88). Also available on the World Wide Web.
3

Effects of footwear on balance and gait in older people

Menant, Jasmine Charlotte Christiane, Public Health & Community Medicine, Faculty of Medicine, UNSW January 2008 (has links)
Although footwear has been recognised as a risk factor for falls in older people, it remains unclear as to which features of shoes are beneficial or detrimental to balance. This project aimed to systematically investigate the effects of common shoe features, namely: an elevated heel, a soft sole, a hard sole, a flared sole, a bevelled heel, a high-collar and a tread sole, on balance and gait in older community-dwelling people. The experimental shoes were compared to standard shoes in three studies examining: (i) standing balance, leaning balance and stepping in 29 older people, (ii) centre of mass (COM)-base of support (BOS) margins, vertical and braking loading rates, and perceived shoe comfort and stability in 11 young and 15 older people walking on even and uneven surfaces, and (iii) temporal-spatial gait variables, pelvis acceleration, and gait termination in 10 young and 26 older people, on level, irregular and wet surfaces. Elevated heel shoes impaired overall performance in functional tests of balance and stepping. They were also perceived as lacking comfort and stability and led to a conservative walking pattern characterised by increased step width and double-support time, reduced braking and vertical loading rates and medio-lateral (ML) pelvis accelerations on various surfaces. Soft sole shoes increased lateral COM-BOS margin and step width, indicating reduced ML walking stability. When wearing these shoes, subjects had longer total stopping times and on the wet surface, smaller step lengths and shoe/floor angles at heel strike, suggesting a potential risk of slipping. When wearing high-collar shoes, subjects had better balance as demonstrated by small but significant increases in lateral COM-BOS margin, double-support time and step width, and decreases in ML pelvis accelerations on varying surfaces and in total stopping time on the wet surface. Shoes with hard, flared or tread soles or a bevelled heel did not affect balance. In conclusion, providing that they are fitted, have adequate fastening and perhaps a slip-resistant sole, shoes with a low square heel, a sole of medium hardness (shore A-40) and a high-collar provide the greatest stability for older people when walking on dry, wet and irregular surfaces.
4

Effects of single- vs. dual-task training on balance performance under dual-task conditions in older adults with balance impairment : A randomized, controlled trial/

Silsupadol, Patima, January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 88-96). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
5

Neural and biomechanical mechanisms underlying balance improvement with short term tai chi training in balance impaired older adults

Gatts, Strawberry K. January 2005 (has links)
Thesis (Ph.D)--University of Oregon, 2005. / Includes bibliographical references (leaves 94-101)
6

Older adults' neuromuscular adaptations to resistance training and effects on challenging gait tasks.

Lamoureux, Ecosse, mikewood@deakin.edu.au January 2001 (has links)
Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.
7

Effects of household footwear-surface interactions on the gait of older arthritic females

Munro, Bridget J. January 2005 (has links)
Thesis (Ph.D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references: leaf 251-287.
8

Kinematics and kinetics of unanticipated misstep conditions in gait implications for femoral fractures in the elderly /

Uygur, Mehmet. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2008. / Principal faculty advisor: David A. Barlow, Dept. of Health, Nutrition, & Exercise Sciences. Includes bibliographical references.
9

Neural and biomechanical mechanisms underlying balance improvement with short term tai chi training in balance impaired older adults

Gatts, Strawberry K. January 1900 (has links)
Thesis (Ph. D)--University of Oregon, 2005. / Includes bibliographical references (leaves 94-101). Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
10

Neural and biomechanical mechanisms underlying balance improvement with short term tai chi training in balance impaired older adults /

Gatts, Strawberry K. January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 94-101). Also available for download via the World Wide Web; free to University of Oregon users.

Page generated in 0.1185 seconds