Spelling suggestions: "subject:"galactic stor formation""
1 |
Near-infrared imaging polarimetry of bipolar nebulaeMinchin, Nigel Robert January 1990 (has links)
No description available.
|
2 |
Observing the galactic plane with the Balloon-borne Large-Aperture Submillimeter TelescopeMarsden, Gaelen 05 1900 (has links)
Stars form from collapsing massive clouds of gas and dust. The UV and optical light emitted by a forming or recently-formed star is absorbed by the surrounding cloud and is re-radiated thermally at infrared and
submillimetre wavelengths. Observations in the submillimetre spectrum are uniquely sensitive to star formation in the early Universe, as the peak of the thermal emission is redshifted to submillimetre wavelengths. The coolest objects in star forming regions in our own Galaxy, including heavily-obscured proto-stars and starless gravitationally-bound clumps, are also uniquely bright in the submillimetre spectrum. The Earth's atmosphere is mostly opaque at these wavelengths, however, limiting the spectral coverage and sensitivity achievable from ground-based observatories.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) observes the sky from an altitude of 40 km, above 99.5% of the atmosphere, using a long-duration scientific balloon platform. BLAST observes at 3 broad-band wavelengths spanning 250-500 micron, taking advantage of detector technology developed for the space-based
instrument SPIRE, scheduled for launch in 2008. The greatly-enhanced atmospheric transmission at float altitudes, increased detector sensitivity and large number of detector elements allow BLAST to survey much larger fields in a much smaller time than can be accomplished with ground-based instruments. It is expected that in a
single 10-day flight, BLAST will detect ~10000 extragalactic sources, ~100 times the number detected in 10 years of ground-based observations, and 1000s of Galactic star-forming sources, a large fraction of which are not seen by infrared telescopes.
The instrument has performed 2 scientific flights, in the summer of 2005 and winter of 2006, for a total of 16 days of observing time. This thesis discusses the design of the instrument, performance of the flights, and presents the analysis of 2 of the fields observed during the first flight. A failure in the optical system during the first
flight precluded sensitive extragalactic observations, so the majority of the flight was spent observing Galactic targets. We anticipate exciting extragalactic and Galactic results from the 2006 data.
|
3 |
Observing the galactic plane with the Balloon-borne Large-Aperture Submillimeter TelescopeMarsden, Gaelen 05 1900 (has links)
Stars form from collapsing massive clouds of gas and dust. The UV and optical light emitted by a forming or recently-formed star is absorbed by the surrounding cloud and is re-radiated thermally at infrared and
submillimetre wavelengths. Observations in the submillimetre spectrum are uniquely sensitive to star formation in the early Universe, as the peak of the thermal emission is redshifted to submillimetre wavelengths. The coolest objects in star forming regions in our own Galaxy, including heavily-obscured proto-stars and starless gravitationally-bound clumps, are also uniquely bright in the submillimetre spectrum. The Earth's atmosphere is mostly opaque at these wavelengths, however, limiting the spectral coverage and sensitivity achievable from ground-based observatories.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) observes the sky from an altitude of 40 km, above 99.5% of the atmosphere, using a long-duration scientific balloon platform. BLAST observes at 3 broad-band wavelengths spanning 250-500 micron, taking advantage of detector technology developed for the space-based
instrument SPIRE, scheduled for launch in 2008. The greatly-enhanced atmospheric transmission at float altitudes, increased detector sensitivity and large number of detector elements allow BLAST to survey much larger fields in a much smaller time than can be accomplished with ground-based instruments. It is expected that in a
single 10-day flight, BLAST will detect ~10000 extragalactic sources, ~100 times the number detected in 10 years of ground-based observations, and 1000s of Galactic star-forming sources, a large fraction of which are not seen by infrared telescopes.
The instrument has performed 2 scientific flights, in the summer of 2005 and winter of 2006, for a total of 16 days of observing time. This thesis discusses the design of the instrument, performance of the flights, and presents the analysis of 2 of the fields observed during the first flight. A failure in the optical system during the first
flight precluded sensitive extragalactic observations, so the majority of the flight was spent observing Galactic targets. We anticipate exciting extragalactic and Galactic results from the 2006 data.
|
4 |
Observing the galactic plane with the Balloon-borne Large-Aperture Submillimeter TelescopeMarsden, Gaelen 05 1900 (has links)
Stars form from collapsing massive clouds of gas and dust. The UV and optical light emitted by a forming or recently-formed star is absorbed by the surrounding cloud and is re-radiated thermally at infrared and
submillimetre wavelengths. Observations in the submillimetre spectrum are uniquely sensitive to star formation in the early Universe, as the peak of the thermal emission is redshifted to submillimetre wavelengths. The coolest objects in star forming regions in our own Galaxy, including heavily-obscured proto-stars and starless gravitationally-bound clumps, are also uniquely bright in the submillimetre spectrum. The Earth's atmosphere is mostly opaque at these wavelengths, however, limiting the spectral coverage and sensitivity achievable from ground-based observatories.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) observes the sky from an altitude of 40 km, above 99.5% of the atmosphere, using a long-duration scientific balloon platform. BLAST observes at 3 broad-band wavelengths spanning 250-500 micron, taking advantage of detector technology developed for the space-based
instrument SPIRE, scheduled for launch in 2008. The greatly-enhanced atmospheric transmission at float altitudes, increased detector sensitivity and large number of detector elements allow BLAST to survey much larger fields in a much smaller time than can be accomplished with ground-based instruments. It is expected that in a
single 10-day flight, BLAST will detect ~10000 extragalactic sources, ~100 times the number detected in 10 years of ground-based observations, and 1000s of Galactic star-forming sources, a large fraction of which are not seen by infrared telescopes.
The instrument has performed 2 scientific flights, in the summer of 2005 and winter of 2006, for a total of 16 days of observing time. This thesis discusses the design of the instrument, performance of the flights, and presents the analysis of 2 of the fields observed during the first flight. A failure in the optical system during the first
flight precluded sensitive extragalactic observations, so the majority of the flight was spent observing Galactic targets. We anticipate exciting extragalactic and Galactic results from the 2006 data. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
5 |
Probing galaxy evolution through numerical simulations: mergers, gas, and star formationHani, Maan H. 27 August 2020 (has links)
Large observational surveys have compiled substantial galaxy samples with an array of different properties across cosmic time. While we have a broad understanding of how galaxies grow and build their observable properties, the details of galaxy growth and evolution pose a fundamental challenge to galaxy evolution theories. Nonetheless, galaxy evolution is ultimately regulated by the properties of the gas reservoir. In this thesis I use numerical simulations to answer key questions related to the galactic gas reservoir, and galaxy mergers: a major transformational process.
In Chapter 2 I present an analysis of 28 simulated L* galaxies to understand the physical processes that shape the massive gas reservoir surrounding galaxies (i.e. the circum-galactic medium; CGM). I show that (1) the gas and metal content of the CGM is driven by galaxy growth and the strength/presence of feedback processes, and (2) the ionisation and internal structures of the CGM are shaped by galactic outflows, and active galactic nucleus luminosity. Albeit dependent on internal galactic properties and the physical processes that shape them, the CGM remains greatly diverse, thus posing a challenge for observational surveys.
As a follow-up to my study of normal L* galaxy gas halos, in Chapter 3 I present a theoretical study of the effect of galaxy mergers on the CGM. I demonstrate that galaxy mergers can leave a strong imprint on the CGM's gas and metal content, metallicity, and size. The merger can increase (1) the CGM's metallicity by 0.2-0.3 dex within 0.5 Gyr post-merge, and (2) the metal covering fractions by factors of 2-3. In spite of the increase in the CGM's metal content, the hard ionising field during the merger can drive a decline in the covering fractions of commonly observed ions.
In Chapter 4 I shift focus to star formation, particularly the effects of galaxy mergers on star formation. While the effects of galaxy mergers have been proven observationally, theoretical predictions are limited to small binary merger suites and cosmological zoom-in studies. I present a statistical study of 27,691 post-merger galaxies from IllustrisTNG to quantify the effect of galaxy mergers on galactic star formation. I report a dependence in the merger-induced star formation rate (SFR) on mass ratio, stellar mass, gas fraction, and galaxy SFR. I also track the evolution of the effects of galaxy mergers demonstrating their decay over ~500 Myr.
In Chapter 6, I leverage galactic scaling relations to extend my work on the effects of galaxy mergers to resolved scales. However, before using the simulated resolved scaling relations, I first examine their existence and robustness. In Chapter 5, I demonstrate the emergence of the kpc-scale star forming main sequence (rSFMS) in the FIRE-2 simulations. Nonetheless, the slope of the rSFMS is dependent on the (1) star formation tracer's timescale, and (2) observed resolution, which I propose is caused by the clumpiness of star formation. I develop a toy model that quantitatively captures the effects of clumpy star formation. I then illustrate how the model can be used to characterise the mass of star-forming clumps.
Having demonstrated the existence and robustness of known scaling relations in numerical simulations, I explore the effects of galaxy mergers on resolved scales in Chapter 6. I generate synthetic observations for 1,927 post-mergers in IllustrisTNG and examine the radially-dependent merger-driven SFR enhancement, and metallicity suppression in post-mergers. Galaxy mergers preferentially boost star formation in the centres and suppress metallicities globally. The effects of the merger depends on galaxy properties such as stellar mass, SFR, mass ratio, and gas fraction. / Graduate
|
Page generated in 0.1017 seconds