• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large-Scale Star Formation Triggering in the Low-Mass Arp 82 System: A Nearby Example of Galaxy Downsizing Based on UV/Optical/Mid-IR Imaging

Hancock, Mark, Smith, Beverly J., Struck, Curtis, Giroux, Mark L., Appleton, Philip N., Charmandaris, Vassilis, Reach, William T. 01 February 2007 (has links)
As part of our Spitzer Spirals, Bridges, and Tails project to help understand the effects of galaxy interactions on star formation, we analyze Galaxy Evolution Explorer UV, Southeastern Association for Research in Astronomy optical, and Spitzer IR images of the interacting galaxy pair Arp 82 (NGC 2535/6) and compare to a numerical simulation of the interaction. We investigate the multiwavelength properties of several individual star-forming complexes (clumps). Using optical and UV colors, EW(Hα), and population synthesis models we constrain the ages of the clumps and find that the median clump age is ∼ Myr. The clumps have masses ranging from a few × 106 to 109 M⊙;. In general, the clumps in the tidal features have ages similar to those in the spiral region, but are less massive. The clumps provide 33%, 36%, and 70% of the far-UV, 8.0 μm, and 24 μm emission, respectively. The 8 and 24 μm luminosities are used to estimate the far-IR luminosities and the star formation rates of the clumps. The total clump star formation rate is ∼2.0 ± 0.8 M⊙ yr -1, while the entire Arp 82 system is forming stars at a rate of ·4.9 ± 2.0 M· yr-1. We find, for the first time, stars in the H I arc to the southeast of the NGC 2535 disk. Population synthesis models indicate that all of the observed populations have young to intermediate ages. We conclude that, although the gas disks and some old stars may have formed early on, the progenitors may have been of late-type or low surface brightness, and the evolution of these galaxies seems to have halted until the recent encounter.
2

Extra-Nuclear Starbursts: Young Luminous Hinge Clumps in Interacting Galaxies

Smith, Beverly J., Soria, Roberto, Struck, Curtis, Giroux, Mark L., Swartz, Douglas A., Yukita, Mihoko 01 March 2014 (has links)
Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy Evolution Explorer UV Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. The most extreme of these hinge clumps have star formation rates of 1-9 M yr-1, comparable to or larger than the "overlap" region of intense star formation between the two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical "super star clusters" in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have FWHM diameters of 70 pc, compared to 3 pc in "ordinary" super star clusters. Their absolute I magnitudes range from MI -12.2 to -16.5; thus, if they are individual star clusters they would lie near the top of the "super star cluster" luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. Comparison to population synthesis modeling indicates that the hinge clumps contain a range of stellar ages. This is consistent with expectations based on models of galaxy interactions, which suggest that star formation may be prolonged in these regions. In the Chandra images, we have found strong X-ray emission from several of these hinge clumps. In most cases, this emission is well-resolved with Chandra and has a thermal X-ray spectrum, thus it is likely due to hot gas associated with the star formation. The ratio of the extinction-corrected diffuse X-ray luminosity to the mechanical energy rate (the X-ray production efficiency) for the hinge clumps is similar to that in the Antennae galaxies, but higher than those for regions in the normal spiral galaxy NGC 2403. Two of the hinge clumps have point-like X-ray emission much brighter than expected for hot gas; these sources are likely "ultra-luminous X-ray sources" due to accretion disks around black holes. The most extreme of these sources, in Arp 240, has a hard X-ray spectrum and an absorbed X-ray luminosity of 2 × 1041 erg s-1; this is above the luminosity expected by single high mass X-ray binaries (HMXBs), thus it may be either a collection of HMXBs or an intermediate mass black hole (≥80 M ).

Page generated in 0.0743 seconds