• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 771
  • 181
  • 61
  • 37
  • 16
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1319
  • 316
  • 301
  • 277
  • 269
  • 205
  • 204
  • 199
  • 182
  • 158
  • 146
  • 145
  • 142
  • 141
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Environmental influence on galaxy evolution in cosmological simulations

Bahé, Yannick Michael January 2013 (has links)
No description available.
272

On the spatial distribution of clusters of galaxies

Kingman, Robert Earl, 1938- January 1966 (has links)
No description available.
273

A comparison of line intensities in the spectra of galactic and extragalactic emission objects

Chriss, Michael, 1934- January 1959 (has links)
No description available.
274

Stellar masses of star forming galaxies in clusters

Randriamampandry, Solohery January 2010 (has links)
No description available.
275

Strong Gravitation Lensing as a Probe of Galaxy Evolution and Cosmology

Wong, Kenneth Christopher January 2013 (has links)
In this thesis, I explore how the environments of both galaxy and cluster-scale strong gravitational lenses affect studies of cosmology and the properties of the earliest galaxies.Galaxy-scale lenses with measured time delays can be used to determine the Hubble constant, given an accurate lens model. However, perturbations from structures along the line of sight can introduce errors into the measurement. I use data from a survey towards known lenses in group environments to calculate the external shear in these systems, which is typically marginalized over in standard lens analyses. In three of six systems where I compare the independently-calculated environment shear to lens model shears, the quantities disagree at greater than 95% confidence. We explore possible sources of this disagreement. Using these data, I generate fiducial lines of sight and insert mock lenses with assumed input physical and cosmological parameters and find that those parameters can be recovered with∼ 5-10% scatter when uncertainties in my characterization of the environment are applied. The lenses in groups have larger bias and scatter. I predict how well new time delay lenses from LSST will constrain H_0 and find that an ensemble of 500 quad lenses will recover H_0 with∼ 2% bias with∼ 0.3% precision.On larger scales, galaxy cluster lenses can magnify the earliest galaxies into detectability. While past studies have focused on single massive clusters, I investigate the properties of lines of sight, or ``beams", containing multiple cluster-scale halos in projection. Even for beams of similar total mass, those with multiple halos have higher lensing cross sections on average. The optimal configurations for maximizing the cross section are also those that maximize faint z∼ 10 detections. I present a new selection technique to identify beams in wide-area photometric surveys that contain high total masses and often multiple clusters in projection as traced by luminous red galaxies. I apply this technique to the Sloan Digital Sky Survey and present the 200 most promising beams. Several are confirmed spectroscopically to be among the highest mass beams known with some containing multiple clusters. These are among the best fields to search for faint high-redshift galaxies.
276

The nature and origin of disky elliptical galaxies

McDermid, Richard Morgan January 2002 (has links)
The observational trend that disky elliptical galaxies exhibit younger luminosity- weighted ages than boxy ellipticals is investigated. The presence of a possible young stellar disk embedded in these galaxies is explored by comparing kinematics derived from the near-infrared Calcium II triplet (around 8600 Å) and Hβ (4863 Å) Balmer line, thought to be sensitive to older and younger stars respectively. Using synthetic stellar population spectra of these two wavelength regions, it is found that a young disk component produces observable differences in the kinematics derived from the two wavelength regions. Specifically, very young disks produce differences in the Gauss-Hermite coefficients, h(_3) and h(_4). Disks with an intermediate age produce offsets in the rotation velocities. Older disks produce clear two-component structure in the derived LOSVDs. Thus, diagnostic indicators are established which can be applied to observations. A comparison is presented of the major- and minor-axis kinematics derived from the Calcium II triplet and Hβ absorption features for a small sample of disky elliptical galaxies with enhanced Hβ absorption strength, indicative of a young component. For two galaxies in the sample, NGC 584 and NGC 821, Hβ gives a rotation velocity higher than that from the Calcium II triplet. These offsets are not consistent with the spectral models, since the offsets in velocity are not accompanied by the expected offsets in the other LOSVD parameters. This implies that the disks have either formed over time with a modest star- formation rate; or that the young stars in these systems are present in both the disk and spheroid components. From dynamical modelling of ground-based integral-field spectroscopy combined with HST STIS data, the disky elliptical NGC 821 is found to have a mass-to-light ratio of 4.12± 0.06 in I-band solar units, and harbours a central black hole of mass (3.41 ± 0.68) x 10(^7) M(_ʘ). This black hole mass is consistent with Gebhardt et al. (2002), who use the same STIS data with their independent modelling code. The phase-space distribution of the orbits in the model shows evidence for a two-component structure, which corresponds to a slowly rotating spheroidal component superimposed with a flattened, strongly rotating component. This second component, which has properties similar to a disk, accounts for 15% of the total system mass. Applying the two-component stellar population models, a disk of this mass would have formed 6 Gyr ago to produce the observed Hβ absorption. Such a disk is not consistent with the long-slit observations, as no offset was found between the Calcium II triplet and Hβ velocity dispersions. However, this cannot be strongly excluded due to the effects of metallicity and disk velocity dispersion on the spectral modelling.
277

Galaxy formation and clustering in a hierarchical universe

Benson, Andrew John January 2000 (has links)
In this Thesis we describe a semi-analytic model of galaxy formation. We apply the model to the problem of galaxy clustering and show that the dependence of galaxy formation efficiency on halo mass leads to a scale-dependent bias in the distribution of galaxies relative to the distribution of mass. Remarkably, this results in a correlation function in a flat, Ωo = 0.3, CDM model that is close to a power-law over four orders of magnitude in amplitude and which agrees well with the correlation function of galaxies measured in the APM survey. The galaxy velocity dispersion is ~ 40% lower than that of the dark matter. Biases cause the redshift space correlation functions of model galaxies and dark matter to be remarkably similar to each other. A dependence of clustering strength on galaxy luminosity exists for extremely bright galaxies and for galaxies selected either by morphology or by colour. We present predictions for the reionization of the intergalactic medium by stars in high-redshift galaxies, including the effects of absorption by interstellar gas and dust. We combine our model with an N-body simulation to calculate the temperature anisotropies induced in the cosmic microwave background by reionization. Finally, we test key aspects of the model. We use ROSAT PSPC data to search for extended X-ray emission from the halos of three nearby, massive, late-type galaxies. The luminosity lies well below the model prediction. We discuss this discrepancy and consider a number of possible explanations. By comparing the statistical properties of galaxies in our model with those of galaxies formed in cosmological hydrodynamics simulations we show that the two techniques produce broadly consistent predictions. However, individual statistics, such as the galaxy mass function, may differ by factors of 2-4. We identify possible reasons for these discrepancies, thereby highlighting avenues for future work to explore.
278

Cosmology and large-scale structure from quasar redshift surveys

Croom, Scott Martin January 1997 (has links)
Our aim in this thesis is to use the clustering of QSOs to investigate large- scale structure and cosmology. We are particularly concerned with estimating the cosmological parameters which govern the evolution of structure in the Universe. We first investigate how QSOs trace the distribution of 'normal' galaxies by measuring the correlation between a sample of ~ 150 QSOs and faint, b(_j) < 23 galaxies. At z < 1.5 we find that the cross-correlation amplitude is marginally negative. This low signal clearly rules out models in which QSOs inhabit rich environments. The environments of QSOs are more similar to those of average galaxies. The slight negative correlation can be explained by gravitational lensing, but this has no effect on our conclusions concerning QSO environments. We determine the clustering properties of a combined sample of > 1500 QSOs including the LBQS and Durham/AAT QSO surveys. This data set has a clustering amplitude Ɛ(10 h(^-1) Mpc) = 0.83 ± 0.29 for Ωₒ = 1 at z = 1.27. On ~ 100 – 1000 h(^-1) Mpc scales the limit on detected signals in Ɛ is ±0.025. A model of clustering evolution which includes the effect of bias was used to compare QSO clustering to the clustering of low redshift galaxies and Seyfert galaxies. If Seyferts and QSOs are similarly clustered, then the data prefer a low Ωₒ or high bias for QSOs and galaxies. In contrast, comparisons to the CMB measurements of COBE assuming a CDM-type power spectrum suggest low bias. This might be taken as evidence for low do, but the data is still consistent with Ωₒ = 1 and b(_gp) ~ b(gp) ~ 2..We consider the possibility that nearby galaxy clusters can gravitationally lense background QSOs. We apply the lensing hypothesis to the result of Boyle et al., (1988) and find that cluster masses required are too large. A small dust component could retrieve the lensing model and allow more reasonable mass estimates for clusters from this method. The requirement for a new, deep, wide-field, QSO survey is clear. We discuss the construction of the candidate catalogue for the 2dF QSO Redshift Survey, which will contain ~ 25000 QSOs. We calibrate the photographic plates used for the candidate catalogue and assess the sources of errors and incompleteness. From preliminary spectroscopic observations we conclude that the completeness of the 2dF catalogue is ~ 71.1 ± 7.1%, compared with an estimated completeness of ~ 80%. We propose to substantially increase the catalogue completeness (to ~ 90%), by the introduction of UKST r plates into our candidate catalogue.
279

An automated polarimeter and its use in the study of active galaxies

Stockdale, D. P. January 1996 (has links)
In this thesis I present the design and development of an automated polarimeter for use in mapping the percentage levels and position angles of linearly polarized light from extended astronomical objects. The polarimeter is controlled from a personal computer that is running a UNIX operating system and controls not only the instrument, but the CCD camera as well. The second chapter of the thesis consists of a description of how the polarimeter works, the principles behind the optics, the mechanics and the electronics. The third chapter describes the software that controls the functional units within the polarimeter to the required accuracy demanded of a scientific application. The fourth and fifth chapters of the thesis address some of the scientific issues that the polarimeter has been used to clarify. There is a brief presentation of the phenomena of starburst galaxies and the generation of galactic-scale winds, often called superwinds. Polarization results and their interpretation for three starburst galaxies are presented.
280

Molecular hydrogen in galaxies

Wilkinson, David Adam January 1987 (has links)
This study aims to understand the key role played by molecular hydrogen in the evolution of galaxies, with a view to constraining its radial distribution in the Galaxy and the CO→H(_2) conversion factor α(_20).The star formation rate is shown to be correlated with the surface density of H(_2). A correlation between the molecular hydrogen fraction and the metallicity of a region allows the time evolution of H(_2) to be described. This leads to a modified 'Schmidt Law' of the SFR which explains quite naturally the production of galactic metallicity gradients and the constancy of the SFR in the absence of infall. A consistent closed model of the chemical evolution of the Galaxy is proposed to solve the G-dwarf problem, the stellar age-metallicity relation and the metallicity gradient, leading to the prediction of some initial amount of pre-disc processing of gas into visible and dark matter. It is found that a constant yield of metals is more appropriate than a yield proportional to metallicity. Possible time variations of the returned fraction, the dark matter fraction and the SFR are also studied. For consistency, we suggest that dark matter in the solar neighbourhood could be totally baryonic provided the Miller-Scalo IMF is modified at the lower end, that is, the dark matter resides in low mass stars or brown dwarfs. The production of metallicity gradients in spiral galaxies is shown to be a direct consequence of the radial variation of the total surface density of matter and the age of the disc. The role of molecular gas in the evolution of the Oort Cloud of comets is examined. It is shown that comet showers with a mean interval of ̴̱ 30My cannot be produced using perturbations of the Oort Cloud by known stars or molecular clouds. If there is indeed an apparent 30My periodicity in the terrestrial mass extinction and geological records, we argue that astronomically induced processes are unlikely to be the primary cause. Evidence is presented that the lifetime of the molecular gas phase is ≤ 2.lO(_8)y, and arguments, particularly from CO observations of the Virgo galaxy cluster, favouring longer lifetimes are shown to be not well founded. We suggest that the ICM in Virgo reduces the value of α(_20) as compared to isolated galaxies. From the above considerations, the radial distribution of in the Galaxy is derived and shown to agree in the inner Galaxy with that derived from ɤ-ray analysis. In the solar neighbourhood we find α(_20) = 2.5±0.5, and present evidence that α(_20) varies as a function of Galactocentric radius and from galaxy to galaxy.

Page generated in 0.0897 seconds