• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Failures of Decoders for LDPC Codes

Chilappagari, Shashi Kiran January 2008 (has links)
Ever since the publication of Shannon's seminal work in 1948, the search for capacity achieving codes has led to many interesting discoveries in channel coding theory. Low-density parity-check (LDPC) codes originally proposed in 1963 were largely forgotten and rediscovered recently. The significance of LDPC codes lies in their capacity approaching performance even when decoded using low complexity sub-optimal decoding algorithms. Iterative decoders are one such class of decoders that work on a graphical representation of a code known as the Tanner graph. Their properties have been well understood in the asymptotic limit of the code length going to infinity. However, the behavior of various decoders for a given finite length code remains largely unknown.An understanding of the failures of the decoders is vital for the error floor analysis of a given code. Broadly speaking, error floor is the abrupt degradation in the frame error rate (FER) performance of a code in the high signal-to-noise ratio domain. Since the error floor phenomenon manifests in the regions not reachable by Monte-Carlo simulations, analytical methods are necessary for characterizing the decoding failures. In this work, we consider hard decision decoders for transmission over the binary symmetric channel (BSC).For column-weight-three codes, we provide tight upper and lower bounds on the guaranteed error correction capability of a code under the Gallager A algorithm by studying combinatorial objects known as trapping sets. For higher column weight codes, we establish bounds on the minimum number of variable nodes that achieve certain expansion as a function of the girth of the underlying Tanner graph, thereby obtaining lower bounds on the guaranteed error correction capability. We explore the relationship between a class of graphs known as cage graphs and trapping sets to establish upper bounds on the error correction capability.We also propose an algorithm to identify the most probable noise configurations, also known as instantons, that lead to error floor for linear programming (LP) decoding over the BSC. With the insight gained from the above analysis techniques, we propose novel code construction techniques that result in codes with superior error floor performance.

Page generated in 0.049 seconds