Spelling suggestions: "subject:"samma tocopherol""
1 |
Neuroprotection by γ-Tocopherol in Lean and Obese Murine Models ofIschemic StrokeStock, Katie Lauren 24 October 2019 (has links)
No description available.
|
2 |
Gamma Tocotrienol and Prostate Cancer: The Regulation of Two Independent Pathways to Potentiate Cell Growth Inhibition and ApoptosisCampbell, S., Whaley, S. G., Phillips, R., Aggarwal, B. B., Stimmel, J. B., Leesnitzer, L., Blanchard, S. G., Stone, W. L., Christian, Muenyi, Krishnan, K. 01 October 2008 (has links)
Dietary vitamin E, highly expressed in palm oil, exists as either tocopherols or tocotrienols. Evidence indicates that vitamin Es maybe potent cancer preventive agents. In this study, the y- and O- isoforms of vitamin E were found to he the most effective at cancer cell growth inhibition, with the tocotrienols being more effective than the tocopherols in androgen-independent PC-3 prostate cancer cells. To assure that these compounds were selective toward cancer cells, the growth arrest of PrEC normal prostate cells was compared to PC-3 cells. At concentrations of -30 iM dietary, y-vitamin Es showed no signficant growth arrest on PrEC cell growth, hut selectively inhibited growth in the PC-3 cancer cells. Moreover y-Tocotrienol demonstrated a greater potential to inhibit growth in cancer cells at these lower concentrations than did y-Tocopherol. Two independent pathways important in carcinogenesis were tested: PPAR y and NFicB. The PPAR y was up regulated by both dietary y-vitamin Es by the modulation of the endogenous ligand 15-S-HETE, while NFicB was only regulated by y-Tocotrienol. The modulation of NFicB was confirmed by the down regulation of the pro-Apoptotic proteins clAP, xIAP, and BcL-2 which potentiate apoptosis and are down stream effectors of NFicB.
|
3 |
Effects of Select Vitamin E Isoforms on the Production of Polyunsaturated Fatty Acid Metabolites in Colorectal CancerBorketey, Martha A 01 May 2015 (has links)
Vitamin E exhibits anti-tumor activity by regulating pathways in cancer cells, potentially the lipoxygenase (LOX) pathway. We studied the effects of alpha tocopherol (AT), gamma tocopherol (GT), gamma tocotrienol (GT3), and an alpha-gamma tocopherol mixture (ATGT) on the production of the LOX metabolites 13-hydroxyoctadecaenoic acid (HODE), 15-hydroxyeicosatetraenoic acid (HETE), 12-HETE, and 5-HETE in colorectal cancer. These metabolites were examined in the HCT-116 cell line after 24 h treatment with select vitamin E isoforms and quantified by LC/MS/MS. Under physiological conditions, we find that treatment with varying vitamin E isoforms have different effects on the production of 13-HODE, 15-HETE, 12-HETE, and 5-HETE. GT increases 13-HODE and decreases 12-HETE. AT reverses the effects of GT regulation on the LOX pathway, while GT3 has no significant effect on the metabolites tested. GT shows superiority in regulating the LOX pathway as it increases 13-HODE and decreases 12-HETE for possible prevention of colorectal cancer.
|
4 |
The role of dietary phenolic compounds in the detoxification of reactive nitrogen speciesMorton, Lincoln William January 2003 (has links)
[Truncated abstract. Please see the pdf format for the complete text.] Interest in the role of peroxynitrite in the pathogenesis of atherosclerosis has increased due to many in vitro studies which have demonstrated its potent oxidising and nitrating capability and immunohistochemical staining studies which demonstrate nitration of tyrosine in vivo. It is frequently suggested that the production of nitric oxide and superoxide at sites of inflammation implicates peroxynitrite as the major damaging reactive nitrogen species in vivo. Evidence for a role for peroxynitrite is often demonstrated by measurement of 3-nitrotyrosine yet even this cannot distinguish peroxynitrite from other nitrating species. Clearly, however, if peroxynitrite is important in atherogenesis, then identification of mechanisms for its detoxification could provide a means of preventing such effects. Therefore, this Thesis has sought to determine whether phenolic compounds of dietary origin can be preferentially nitrated by reactive nitrogen species thereby protecting endogenous structures, such as low density lipoproteins, from atherogenic modifications. This Thesis focuses upon phenolic acids as they have received relatively less attention than other classes of phenolic compounds, such as flavonoids, yet they are quite abundant in socially important beverages such as red wine. In order to complete the required analyses, the development of methods to detect phenolic acids and their nitration products together with 3-nitrotyrosine, dityrosine and 5-nitro-γ-tocopherol was necessary. The initial in vitro experiments described herein sought to determine the products of reaction of peroxynitrite with phenolic acids of the 4-hydroxy and 3,4-dihydroxy type and then to examine whether these products could account for a protective effect upon tyrosine, lipids and endogenous anti-oxidants, if any was observed, when isolated LDL was treated with SIN-1, which releases peroxynitrite through the simultaneous generation of nitric oxide and superoxide. A concurrent minor focus was to examine the relationship between structure and activity of these phenolic acids under various regimes of oxidative insult. These experiments indicate that, at least in this in vitro model, oxidation is a dominant mechanism over nitration. Peroxynitrite was shown to nitrate coumaric acid in moderate yields but exclusive oxidation of caffeic acid appeared to occur. Although a potential role for γ-tocopherol as an anti-nitration agent was inferred, all types of chemical treatment of LDL in the presence of phenolic acids yielded oxidation as the primary end point. In fact, nitration of tyrosine was not detected and nitration of coumaric acid was at the limit of detection. Since nitration of tyrosine is generally regarded as important in many disease states, a more physiological nitrating mechanism involving artificially stimulated neutrophils was used. This system demonstrated that although physiologically relevant reactive nitrogen species can result in nitration of phenolic compounds, in a complex system including biological structures (LDL) and phenolic compounds, oxidation but not nitration of all species appears to occur. As a consequence of the results above, an examination of carotid plaque was undertaken to determine to what extent nitration occurred relative to oxidation in atherosclerotic tissue. These studies applied methods developed herein to detect 3-nitrotyrosine and dityrosine in complex biological matrices as markers of nitration and oxidation respectively. The data obtained demonstrated that nitration was a minor modification of protein (0.01%) compared to oxidation (0.3%) even in a highly diseased tissue such as carotid artery plaque. A secondary study examining plasma revealed that dityrosine, which has been implicated in irreversible albumin aggregation in chronic renal failure and more recently in heart disease, is elevated in chronic renal failure subjects compared to well matched controls. A separate examination of plasma from healthy subjects revealed that in both the fasting and post prandial state 3-nitrotyrosine could not be detected and, in fact, interfering species could be problematic in the GC-MS analysis of 3-nitrotyrosine. The lack of nitration of any substrate observed in vitro using reactive nitrogen species generated in the aqueous phase, the relative lack of nitration of tyrosine in plaque proteins and the lipophilicity of nitric oxide, the precursor of all reactive nitrogen species, suggested that nitration could be more closely associated with lipid structures. The known ability of γ-tocopherol to form 5-nitro-γ-tocopherol was used to probe this concept. The 5-nitro-γ-tocopherol content of lipid extracts obtained from carotid artery plaques was very high (30%). This indicated that nitration is predominantly a lipid phase phenomenon and that nitrating species are present in much greater abundance than oxidising species in vivo.
|
5 |
The Pathophysiology of Smoking During Pregnancy: A Systems Biology ApproachStone, William L., Bailey, Beth, Khraisha, Nesreen 01 June 2014 (has links)
This article focuses on a systems biology approach to studying the pathophysiology of cigarette smoking during pregnancy. Particular emphasis is given to the damaging role of oxidative stress. Cigarette smoking exerts multiple adverse affects but abundant evidence, mostly in adults, suggests that oxidative stress and free radical damage is a major pathophysiological factor. Smoking during pregnancy is known to contribute to numerous poor birth outcomes, such as low birth weight, preterm birth as well as life-long health and developmental problems. It is clinically important to know the separate contributions that cigarette derived-nicotine and smoking-induced free oxidative stress make to these poor outcomes. Surprisingly, the extent to which smoking dependent oxidative stress contributes to these poor outcomes is not well studied but the application of redox proteomics should be useful. Considerable biochemical evidence suggests that antioxidants, such as tocopherols and ascorbate, could be useful in minimizing oxidative stress induced pathology to the developing fetus in those women who, despite medical advice, continue to smoke. Nevertheless, this suggestion has yet to be tested in well-designed clinical studies.
|
Page generated in 0.0484 seconds