• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tachykinin Agonists Modulate Cholinergic Neurotransmission at Guinea-Pig Intracardiac Ganglia

Zhang, Lili, Hancock, John C., Hoover, Donald B. 05 December 2005 (has links)
Effects of substance P (SP) and selective tachykinin agonists on neurotransmission at guinea-pig intracardiac ganglia were studied in vitro. Voltage responses of neurons to superfused tachykinins and nerve stimulation were measured using intracellular microelectrodes. Predominant effects of SP (1 μM) were to cause slow depolarization and enable synaptic transmission at low intensities of nerve stimulation. Augmented response to nerve stimulation occurred with 29 of 40 intracardiac neurons (approx. 73%). SP inhibited synaptic transmission at 23% of intracardiac neurons but also caused slow depolarization. Activation of NK3 receptors with 100 nM [MePhe 7]neurokinin B caused slow depolarization, enhanced the response of many intracardiac neurons to low intensity nerve stimulation or local application of acetylcholine, and triggered action potentials independent of other stimuli in 6 of 42 neurons. The NK1 agonist [Sar 9,Met(O2)11]SP had similar actions but was less effective and did not trigger action potentials independently. Neither selective agonist inhibited cholinergic neurotransmission. We conclude that SP can function as a positive or negative neuromodulator at intracardiac ganglion cells, which could be either efferent neurons or interneurons. Potentiation occurs primarily through NK3 receptors and may enable neuronal responses with less preganglionic nerve activity. Inhibition of neurotransmission by SP is most likely explained by the known blocking action of this peptide at ganglionic nicotine receptors.

Page generated in 0.1071 seconds