• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Timescales of Oceanic Lithosphere Hydration: Constraints from Rodingites, Apennines, Italy

Lorthioir, Charlotte January 2023 (has links)
Thesis advisor: Ethan Baxter / Serpentinites assume a critical role in geochemical and geophysical cycles, from recycling fluid into the sub-arc mantle to facilitating exhumation within subduction zones. Rodingite dikes can be used as a lens to investigate the hydration of the oceanic lithosphere as their development is synchronous with serpentinization, and while serpentinites lack sufficient mineral phases for geochronology, rodingite dikes are rich in andradite and grossular garnet which are potentially amenable for geochronology. This research seeks to constrain the timescales and duration of hydration of the oceanic lithosphere within the Alpine Tethys ocean basin, and associated serpentinization, by examining Apennines rodingites from the Internal Ligurides (Italy). These rodingites experienced seafloor hydrothermal alteration and were obducted onto the continental margin during Alpine orogenesis. As a result, they are ideal for studying seafloor metasomatism as they were not affected by prograde subduction zone metamorphism and dehydration. Sr isotopic and trace element profiles were constructed across two rodingite-serpentinite transects, revealing a complex, multi-stage hydration history consisting of 1) Widespread serpentinization, 2) Gabbroic intrusions, 3) Rodingitization, and 4) Localized, late-stage advective fluid flow. Serpentinizing fluids locally display strong continental crustal isotopic signatures, while rodingitization fluids are characterized by seawater-like values. U-Pb geochronology on rodingite garnets produced an age of 96.1 ± 8.9 Ma, which could represent either the main rodingitization phase or the late-stage advective alteration. / Thesis (MS) — Boston College, 2023. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
2

Sm/Nd garnet geochronology and pressure-temperature paths of eclogites from Syros, Greece: Implications for subduction zone processes and water loss from the subducting slab

Kendall, Jamie January 2016 (has links)
Thesis advisor: Ethan F. Baxter / Samarium/Neodymium (Sm-Nd) garnet geochronology of eclogites from Syros, Greece provides constraints on timing of peak metamorphism while thermodynamic modeling of the same samples allows a comparison of pressure-temperature (P-T) paths. Sm-Nd geochronology of four eclogite samples give ages of 48.8 ± 3.2 Ma (high 147Sm/144Nd = 0.49, n = 6, MSWD = 0.67), 48.1 ± 2.3 Ma (high 147Sm/144Nd = 1.22, n = 4, MSWD = 2.4), 44.7 ± 1.0 Ma (high 147Sm/144Nd = 3.9, n = 6, MSWD = 1.4), and 43.6 ± 1.6 Ma (high 147Sm/144Nd = 1.39, n = 6,MSWD = 2). These garnet growth ages span several million years and are younger than the only other published garnet eclogite ages from the island which use Lutetium/ Hafnium (Lu-Hf) garnet geochronology to place peak metamorphism at ~52 Ma (Lagos et al, 2007). Another eclogite sample dated less precisely yielded an age of 57.7 ± 6.3 Ma (high 147Sm/144Nd = 0.40, n = 10, MSWD = 1.9), significantly older than the other garnets dated in this study. The garnet ages from eclogites presented here suggest that high pressure-low temperature metamorphism, and related garnet growth and dehydration, on Syros lasted ~9 myr, similar to what has been reported for nearby Sifnos Island (Dragovic et al., 2015). Thermodynamic modeling of three samples reveals similar prograde P-T paths despite differences in tectonic setting and chemistry between samples. Water loss from mineral breakdown during the span of subduction zone garnet growth varies between samples from 1.09 to 5.13 weight percent but is greatest for the most ultramafic sample due to chlorite stability permitting greater capacity for water to be carried to depth. P-T paths reach greater maximum pressures (up to 2.42 GPa) than what is reported for Sifnos island (Dragovic et al., 2015) and greater than most previously published pressure estimates for Syros (ie. Okrusch and Bröcker, 1990; Putlitz et al., 2005). / Thesis (MS) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
3

Iron and zinc isotopes reveal redox reactions associated with fluid flow in subduction zones:

Goliber, Skylar F. Beadle January 2022 (has links)
Thesis advisor: Ethan Baxter / Thesis advisor: Mark Behn / Subduction zones are areas of significant mass transfer between Earth’s crust and mantle. The dehydration of water-rich minerals such as serpentinite and lawsonite introduces water and volatiles into the subduction interface, that then travel to the mantle wedge above. The chemical composition, speciation, and redox effect of these fluids carry important implications for arc volcanism and the mobility of economically significant elements. This study uses Fe and Zn isotopic variation in eclogite-breccias from the Monviso ophiolite, combined with Sm-Nd garnet geochronology, to study the composition and redox effects of fluids that were produced during eclogite and blueschist facies metamorphism, and the timescales over which the brecciation and fluid flux events happened. Fe and Zn isotopic measurements were made on a series of four breccia matrix generations (M1-M4), generated during the progressive brecciation of the original Fe-Ti gabbros and the influx of both internally and externally derived fluids. The ∂56Fe and ∂66Zn data display a bi-modal distribution, with early matrix crystallization (M1-3) imparting progressively lighter ∂66Zn values while the ∂56Fe remains relatively unchanged. The last stage of metasomatic rind formation (M4) is associated with a decrease in both Fe and Zn isotopic values and a particularly significant shift in the Fe isotopes. This distribution suggests that early brecciation (M1-3) resulted from small-scale internal fluid flow that did not have a measurable effect on the isotopic composition and redox state of the system. By contrast, late metasomatic rind formation (M4) was facilitated by the flow of large amounts of external fluids with a strongly negative Fe and Zn isotope signature that affected the redox state of the mafic slab and may be responsible for transferring oxidized material into the mantle wedge. Dating of the M4 matrix generation yielded an age of 41.31± 0.60 Ma. A compilation of age data from Monviso suggests peak metamorphism and initial brecciation (M1 formation) likely occurred at ~45 Ma, the formation of the M4 matrix representing the end of eclogite-facies retrogression and brecciation at ~41 Ma, and final blueschist and greenschist retrogression at ~38-35Ma, yielding timescale of ~4Ma for the entire history of brecciation and fluid flux associated with the Monviso eclogite breccias. / Thesis (MS) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
4

Pressure-Temperature-time Constraints on the Deep Subduction of the Seve Nappe Complex in Jämtland and southern Västerbotten, Scandinavian Caledonides / Tryck-temperatur och åldersbestämmning av Seveskollancomplexet i Jämtland och södra Västerbotten, Skandinaviska Kaledoniderna

Holmberg, Johanna January 2017 (has links)
The Scandinavian Caledonides are defined by long transported thrust sheets emplaced in a nappe stratigraphic succession onto the Paleozoic Baltica platform, as a result of the collision between the paleo-continents Baltica and Laurentia. This Palaeozoic collisional orogen is nowadays exposed at mid-crustal levels, thus provides an excellent ground for in situ studies of mountain building processes. The complex nappe stack is subdivided into the Lower, Middle, Upper and Uppermost allochthons. The tectonostratigraphic highest unit in the Middle Allochthon is the Seve Nappe Complex (SNC), itself segmented into Lower, Middle and Upper Seve nappes, which all experienced different metamorphic evolution. The SNC is known for high pressure (HP) and ultrahigh pressure (UHP) subduction related rocks and the target for the Collisional Orogeny in the Scandinavian Caledonides (COSC-1) scientific drilling programme. The drilling resulted in a continuous c. 2.4 km long drill core through the Lower Seve Nappe, drilled in the eastern slope of Åreskutan Mt in west-central Jämtland. Above the COSC-1 profile lies the high grade Middle Seve Nappe (i.e. Åreskutan Nappe), which experienced UHP verified by the presence of microdiamonds in kyanite bearing gneisses. Recently, microdiamonds have also been discovered in gneisses (described here) further north close to Saxnäs in southern Västerbotten.     The metamorphic history of the Lower Seve Nappe is reconstructed based on material from the COSC-1 drill core, which also enables evaluation of the tectonometamorphic relationship to the overlying high grade Middle Seve Nappe. The Lower Seve Nappe comprise calc-silicates, calcareous gneisses and mylonitic micaschists and two tectonometamorphic events are recognized, prograde metamorphism (M1-D1) and retrograde thrust related metamorphism (M2-D2). Pressure and temperature (PT) conditions of the Lower Seve Nappe is constrained by state-of-the-art Quartz-in-Garnet (QuiG) barometry based on the shift in Raman band position of quartz inclusions in garnet, and Titanium-in-Quartz (TitaniQ) thermometry (satellite masters project). Supplementary conventional barometry based on phengite composition is applied where the use of QuiG is limited. The PT conditions of the M1-D1 is constrained to ~ 8-13 kbar, 525-695 o C and the M2-D2 event ~7-10 kbar, 450-550 o C. Conclusively, the Lower Seve Nappe was metamorphosed in upper greenschist-amphibolite to lower eclogite facies conditions at depths around 40-60 km and later suffered from greenschist overprint during thrusting. Lu-Hf garnet geochronology confirm that the overlying high-grade Åreskutan Nappe experienced UHP conditions around 450 Ma at depths around 120 km. Likewise, Ar-Ar dating implies peak conditions of the Lower Seve around 460-450 Ma. Moreover, their respective lower shear zones were active at the same time, c. 424 Ma. Conclusively, they were juxtaposed in their current tectonostratigraphic positions in a subduction channel in the early Silurian as a result of exhumation. Additionally, the microdiamond bearing kyanite-garnet gneisses from Saxnäs indeed show similarities to the Åreskutan gneisses, which strongly implies that the UHPM in this unit of the Scandinavian Caledonides is of regional character. / De Skandinaviska Kaledoniderna har bildats genom en kollision mellan de två kontinentalplattorna Baltika och Laurentia då Japetushavet stängdes omkring 400 miljoner år sedan. Till följd av de starkt komprimerande krafterna transporterades stora flak (skollor) av havsbottenberggrund och kontinentalskorpa hundratals kilometer upp på Baltikakontinenten. Skollorna är överskjutna på varandra omlott och benämns som undre, mellersta, övre och översta skollberggrunderna och återfinns idag i vår fjällkedja. Innan kollisionen med Laurentia krockade Baltika med en vulkanisk öbåge, vilket resulterade i att delar av Baltika pressades ner så pass djupt att bland annat diamanter bildades till följd av det ultrahöga trycket. Bevis för omvandling under extremt tryck finns i den så kallade Seveskollan som utgör en del av den mellersta skollberggrunden. Seveskollan är ett komplex av tre olika enheter, som utsatts för olika grad av metamorfos till följd av tryck och temperatur. Till följd av väder och vind under miljontals år så är fjällkedjan idag nederoderad och därav väl exponerad. Det gör att de Skandinaviska Kaledoniderna är en av världens bästa platser att studera och förstå bergskedjebildade processer. Av den anledningen borrade djupborrningsprojektet COSC-1 en cirka 2.4 km långt kärnborrhål genom den lägst belägna enheten i Seve komplexet (lägre Seveskollan) strax nedanför Åreskutan i Jämtlandsfjällen. Över COSC-1 profilen ligger den berggrund som tillhör den mellersta Seveskollan, även kallad Åreskutanskollan. Åreskutanskollan är en del av Baltika som utsattes för ultrahöga tryck, och i kyanitförande gnejser har diamanter inneslutna i det motståndskraftiga mineralet granat påträffats. Nyligen, längre norrut i Saxnäs (södra Västerbotten) har ytterligare diamantförande gnejser påträffats i den mellersta Seveskollan, som karaktäriseras i den här studien.      Material från COSC-1 borrkärnan har använts för att bestämma under vilka tryck och temperatur bergarterna i den lägre Seveskollan har metmorfoserats, för att förstå den tektoniska och metamorfa utvecklingen och även relationen till den överliggande högmetamorfa Åreskutanskollan. Trycket har bestämts genom den relativt oprövade metoden QuiG -barometri. Små kristaller av kvarts inneslutna i granat har analyserats med Raman spektroskopi och de fysikaliska parametrarna av kvarts och granat kan direkt översättas till tryck. Temperatur har erhållits genom det temperaturkänsliga ämnet titan i kvartsinneslutningarna. Resultatet visar att den lägre Seveskollan har genomgått minst två metamorfa faser genom tektonisk påverkan. Den första fasen varierar från övre grönskiffer-amfibolit till lägre eklogitfacies under tryck och temperatur av ca 8-13 kbar, 525-695 o C. Den andra fasen är associerad med överskjutning och skjuvning, vilket orsakade retrograd metamorfos i grönskifferfacies under lägre tryck och temperatur (ca 7-10 kbar, 450-550 o C). Datering baserat på radioaktivt sönderfall av lutetium till hafnium i granat fastställer att Åreskutanskollan utsattes för ultrahögt tryck för omkring 450 miljoner år sedan, samtidigt som lägre Seveskollan nådde metamorft klimax. Resultaten visar även att lägre och mellersta Seveskollorna skjuvades samtidigt, omkring 424 miljoner år sedan. Det betyder att de erhöll sina nuvarande tektonostratigrafiska positioner på stort djup innan överskjutningen på Baltika. Detaljerad petrografi påvisar att de diamantförande kyanit-och granatförande gnejserna från Saxnäs visar påtagliga likheter med Åreskutanskollans högtrycksgnejser. Det tyder på att berggrunden i Saxnäs kan kopplas samman med Åreskutanskollan och att ultrahögtrycksmetamorfos av den mellersta Seveskollan omfattar ett större område än vad som tidigare antagits.

Page generated in 0.083 seconds