1 |
Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass SpectrometerZachreson, Matthew R. 08 December 2012 (has links) (PDF)
The Direct Simulation Monte Carlo algorithm as coded in FENIX is used to model the transport of trace ions in the first vacuum stage of the inductively coupled plasma mass spectrometer. Haibin Ma of the Farnsworth group at Brigham Young University measured two radial trace density profiles: one 0.7 mm upstream of the sampling cone and the other 10 mm downstream. We compare simulation results from FENIX with the experimental results. We find that gas dynamic convection and diffusion are unable to account for the experimentally-measured profile changes from upstream to downstream. Including discharge quenching and ambipolar electric fields, however, makes it possible to account for the way the profiles change.
|
2 |
Toward a Novel Gas Cell for X-Ray Spectroscopy : Finite Element Flow Simulation and Raman CharacterizationStångberg Valgeborg, Fredrik January 2019 (has links)
The new millennium has seen revolutionary advances in photonsource technology. As the newly constructed synchrotron facilityMAX IV in Lund, Sweden, pushes brilliance toward what isphysically possible, low-yield spectroscopic techniques, such asresonant inelastic X-ray scattering (RIXS), open new doors inmolecular and condensed matter research. The VERITAS beamline atMAX IV is designed for high-resolution vibrational RIXS on gases.X-rays interact with flowing molecules inside a window-cappedcell, but the radiation intensity is expected to be large enoughto damage the windows, and cause build-up of photochemicalproducts, which lowers transmission. To address these issues, anovel gas cell design is presented, wherein the distance betweensample gas and window is increased by using a flowing heliumbuffer. The main challenge is maintaining a steep sample gasconcentration gradient within the cell, and to that end, gas flowswere simulated on various geometries by using the finite elementmethod to solve the Navier-Stokes equations. Results were used toconstruct a prototype, and confocal Raman microscopy was used forconcentration characterization. Preliminary measurements revealeda uniform sample gas distribution, and the technique proved to beinefficient for wide scanning of parameter values. This suggeststhat a supplementary experiment is required to find roughestimates of good parameter values, which can then be followed upwith new Raman measurements for fine-tuning of the properparameter space. Real-time visualization of the sample gas flow,using a visible gas under an optical microscope, is one candidatefor this supplementary experiment.
|
3 |
Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass SpectrometerZachreson, Matthew R 01 July 2015 (has links) (PDF)
The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the sampling interface.
|
Page generated in 0.1229 seconds