Spelling suggestions: "subject:"gas hydrated stability zone""
1 |
HIGH-FLUX GAS VENTING IN THE EAST SEA, KOREA, FROM ANALYSIS OF 2D SEISMIC REFLECTION DATA.Haacke, R. Ross, Park, Keun-Pil, Stoian, Iulia, Hyndman, Roy D., Schmidt, Ulrike 07 1900 (has links)
Seismic reflection data from a multi-channel streamer deployed offshore Korea reveal evidence of hydrateforming
gases being vented into the ocean. Numerous, localised vent structures are apparent from reduced
seismic reflection amplitude, high seismic velocities, and reflector pull-up. These structures penetrate
upward from the base of the gas hydrate stability zone (GHSZ) and are typically several hundred metres
wide, and only a few hundred metres high. Underlying zones of reduced reflection amplitude and low
velocities indicate the presence of gas many kilometers below the seabed, which migrates upward through
near-vertical conduits to feed the vent structures. Where the local geology and underlying plumbing
indicates a high flux of gases migrating through the system, the associated vent structures show the greatest
change of reflector pull-up (the greatest concentration of hydrate) to be near the seabed; where the local
geology and underlying plumbing indicates a moderate flux of gases, the greatest change of reflector pullup
(the greatest concentration of hydrate) is near the base of the GHSZ. The distribution of gas hydrate in
the high-flux gas vent is consistent with the recent salinity-driven model developed for a rapid and
continuous flow of migrating gas, while the hydrate distribution in the lower-flux vent is consistent with a liquid-dominated system. The high-flux vent shows evidence of recent activity at the seabed, and it is likely
that a substantial amount of gas is passing, or has passed, through this vent structure directly into the
overlying ocean.
|
2 |
PALEO HYDRATE AND ITS ROLE IN DEEP WATER PLIO-PLEISTOCENE GAS RESERVOIRS IN KRISHNA-GODAVARI BASIN, INDIAKundu, Nishikanta, Pal, Nabarun, Sinha, Neeraj, Budhiraja, IL 07 1900 (has links)
Discovery of natural methane hydrate in deepwater sediments in the east-coast of India
have generated significant interest in recent times. This work puts forward a possible
relationship of multi-TCF gas accumulation through destabilization of paleo-hydrate in
Plio-Pleistocene deepwater channel sands of Krishna-Godavari basin, India. Analysis of
gas in the study area establishes its biogenic nature, accumulation of which is difficult
to explain using the elements of conventional petroleum system. Gas generated in
sediments by methanogenesis is mostly lost to the environment, can however be
retained as hydrate under suitable conditions. Longer the time a layer stayed within the
gas hydrate stability zone (GHSZ) greater is the chance of retaining the gas which can
be later released by change in P-T conditions due to sediment burial. P-T history for
selected stratigraphic units from each well is extracted using 1-D burial history model
and analyzed. Hydrate stability curves for individual units through time are generated
and overlain in P-T space. It transpired that hydrate formation and destabilization in
reservoir units of same stratigraphic level in different wells varies both in space and
time. Presence of paleo hydrates is confirmed by the occurrence of authigenic carbonate
cement and low-saline formation water. We demonstrate how gas released by hydrate
destabilization in areas located at greater water depths migrates laterally and updip
along the same stratigraphic level to be entrapped in reservoirs which is outside the
GHSZ. In areas with isolated reservoirs with poor lateral connectivity, the released gas
may remain trapped if impermeable shale is overlain before the destabilization of
hydrate. The sequence of geological events which might have worked together to form
this gas reservoir is: deposition of organic rich sediments → methanogenesis → gas
hydrate formation → destabilization of hydrate and release of gas → migration and
entrapment in reservoirs.
|
Page generated in 0.1175 seconds