• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration de nanomatériaux composites métal@nanoparticules de silice mésoporeuses (MSN) : étude des performances catalytiques en phase aqueuse et des propriétés d'adsorption sélective du diiode en phase gaz / Preparation of transition mela containing mesoporous silica based nano-sized particles : study of the catalytic perfermance in aqueous solution and selective adsorption capacity in the gaz phase

M'Nasri, Najib 21 November 2014 (has links)
Ce travail a concerné l'étude de la fonctionnalisation métallique et du contrôle morphologique de nanoparticules de silice mésoporeuse appelées MSN. La voie de fonctionnalisation par synthèse directe a été privilégiée et a consisté en une encapsulation des précurseurs métalliques dans la phase porogène. L'insertion de cuivre, palladium, platine, argent or et de bimétalliques Cu/Pd et Pd/Pt a été réalisée. Il résulte de cette approche une localisation des nanoparticules métalliques dans les pores et d'une grande accessibilité des fonctionnalités à l'origine des excellentes performances catalytiques mesurées. Ces performances et le recyclage du catalyseur Cu@MSN ont été démontrés pour des réactions de Huisgen et de Sonogashira. Il a également été étudié l'adsorption de l'iode moléculaire en phase gaz sur des MSN fonctionnalisées par des nanoparticules d'argent avec d'excellentes capacités de rétention. / The objective of this thesis was to develop efficient synthesis routes to prepare mesoporous silica-based nano-sized particles, designated as MSN, with controllable morphology and derivatised with selected transition metals. One-pot preparation and surface functionalisation procedures based on the insertion of the metal-phase precursor into the porogen aggregates were thoroughly optimised leading to silica particles containing such single metals as copper, palladium, platinum, silver or gold, as well as a two-metal phase of copper and palladium or that of palladium and platinum. It was demonstrated that the highly dispersed metal phase was localised on the pore surface and therefore it was readily accessible to the target chemicals on which to base the catalytic performance of the resulting materials. Among others, the remarkable catalytic performance of the Cu@MSN material in Huisgen and Sonogashira reactions and its propensity to undergo efficient recycling were proven through laboratory-scale testing. Experimental study of the selective adsorption of iodine vapour onto MSN supports functionalised with silver nanoparticles indicated an excellent retention capacity of such materials.
2

Modification of Carbonaceous Materials with Sulfur and Its Impact on Mercury Capture and Sorbent Regenertion

Morris, Eric Adde 16 August 2013 (has links)
Physical activation of oil-sands fluid coke, a dense carbonaceous material, using sulfur dioxide (SO2) was investigated as a means of utilizing a plentiful and inexpensive waste for elemental mercury (Hg) removal. A new model was developed to elucidate physical activation of dense carbonaceous materials. Experiments and model simulations revealed that, during activation with SO2, a sulfur-rich porous layer is formed around the periphery of the coke particles; this porous layer reaches a maximum thickness as a result of diffusion limitations; the maximum porous layer thickness is controlled by activation conditions and determines the maximum achievable specific surface area (SSA). Pre-oxidation in air prior to activation, acid washing after activation and smaller coke particle size all result in higher SSA. The highest SSA achieved was 530 m2/g, the highest yet found for oil-sands fluid coke with physical activation. If present, oxygen out-competed SO2 for carbon during activation. SO2 activation and porous layer formation did not occur until oxygen was depleted. Sulfur added to coke through SO2 activation is mainly in reduced forms which are more thermally stable than elemental sulfur in commercial sulfur-impregnated activated carbons (SIACs). TGA and elemental analyses revealed that only 17% of sulfur was removed at 800°C from SO2-activated coke under inert conditions, compared with 100% from a commercial SIAC. The role of sulfuric acid (H2SO4) in vapor Hg capture by activated carbon (AC) was studied due to conflicting findings in the recent literature. In the absence of other oxidizing species, it was found that Hg could be oxidized by oxygen which enhanced vapor Hg adsorption by AC and Hg absorption in H2SO4 solution at room and elevated temperatures. At 200°C, AC treated with 20% H2SO4 reached a Hg loading of more than 500 mg/g, which is among the highest Hg capacities yet reported. When oxygen was not present, S6+ in H2SO4 was found to act as an oxidizer of Hg, thus enabling Hg uptake by H2SO4-treated AC at 200°C. Treating the AC with SO2 at 700°C improved the initial rate of Hg uptake, with and without subsequent H2SO4 treatment.
3

Modification of Carbonaceous Materials with Sulfur and Its Impact on Mercury Capture and Sorbent Regenertion

Morris, Eric Adde 16 August 2013 (has links)
Physical activation of oil-sands fluid coke, a dense carbonaceous material, using sulfur dioxide (SO2) was investigated as a means of utilizing a plentiful and inexpensive waste for elemental mercury (Hg) removal. A new model was developed to elucidate physical activation of dense carbonaceous materials. Experiments and model simulations revealed that, during activation with SO2, a sulfur-rich porous layer is formed around the periphery of the coke particles; this porous layer reaches a maximum thickness as a result of diffusion limitations; the maximum porous layer thickness is controlled by activation conditions and determines the maximum achievable specific surface area (SSA). Pre-oxidation in air prior to activation, acid washing after activation and smaller coke particle size all result in higher SSA. The highest SSA achieved was 530 m2/g, the highest yet found for oil-sands fluid coke with physical activation. If present, oxygen out-competed SO2 for carbon during activation. SO2 activation and porous layer formation did not occur until oxygen was depleted. Sulfur added to coke through SO2 activation is mainly in reduced forms which are more thermally stable than elemental sulfur in commercial sulfur-impregnated activated carbons (SIACs). TGA and elemental analyses revealed that only 17% of sulfur was removed at 800°C from SO2-activated coke under inert conditions, compared with 100% from a commercial SIAC. The role of sulfuric acid (H2SO4) in vapor Hg capture by activated carbon (AC) was studied due to conflicting findings in the recent literature. In the absence of other oxidizing species, it was found that Hg could be oxidized by oxygen which enhanced vapor Hg adsorption by AC and Hg absorption in H2SO4 solution at room and elevated temperatures. At 200°C, AC treated with 20% H2SO4 reached a Hg loading of more than 500 mg/g, which is among the highest Hg capacities yet reported. When oxygen was not present, S6+ in H2SO4 was found to act as an oxidizer of Hg, thus enabling Hg uptake by H2SO4-treated AC at 200°C. Treating the AC with SO2 at 700°C improved the initial rate of Hg uptake, with and without subsequent H2SO4 treatment.

Page generated in 0.0973 seconds