• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 17
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 169
  • 18
  • 17
  • 16
  • 15
  • 13
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Discovery and structural characterization of conotoxins from the venom of vermivorous cone snails

Unknown Date (has links)
Cone snails are venomous marine gastropods that produce venom rich in neuroactive peptides, called conopeptides. The majority of published work on conopeptides has been from fish-hunting and mollusk-hunting cone snails. The work in this dissertation focuses on the discovery and characterization of novel conopeptides from the venom of worm-hunting cone snails. Eleven novel conopeptides have been isolated and biochemically characterized from the venom of C. nux using high performance liquid chromatography for the isolation and purification, and mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy were used for the biochemical characterization of the conopeptides. Nano-NMR spectroscopy was used as a tool to elucidate the three-dimensional structures of four conotoxins using native quantities of peptide isolated from the venom of C. nux, C. villepinii, and C. regius. In addition, the sequence-specific assignments and molecular model of a conotoxin from the venom of C. flo ridanus was also completed. The first chapter reviews the known conotoxin three-dimensional structures and cystine-constrained frameworks. The second chapter presents the mini-M conotoxins isolated from the venom of C. nux. The third chapter presents the three-dimensional NMR solution structure of a mini-M conotoxin from the venom of C. regius. The fourth chapter presents the cysteine-free conopeptides isolated from the venom of C. nux; conorfamide-nux1, a RFamide-related peptide, and nux770, a short pentapeptide. The fifth chapter presents the T-superfamily conotoxins isolated from the venom of C. nux, as well as the three-dimensional solution structure of one of the T-superfamily conotoxins. The sixth chapter presents the NMR solution structure of the first conotoxin with a cysteine-stabilized helix-loop-helix fold. / Finally, the seventh chapter presents the O-superfamily conotoxins isolated from the venom of C. nux, as well as the three-dimensional solution structure of one of the O- superfamily conotoxins with an unusually knotted fold. This work shows the vast structural diversity of peptides that cone snails continue to engineer. / by Sanaz Dovell. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
82

Molecular characterization of the injected venom of Conus ermineus

Unknown Date (has links)
Cone snails are predatory marine animals that rely on their venom components to immobilize and capture their prey. According to the type of prey preference, cone snails can be divided into three groups: vermivorous, molluscivorous and piscivorous. Conus ermineus had been identified as the only piscivorous snail of the Atlantic Ocean. Cone snail venom is a complex and rich sources of natural toxins. The majority of the components of the venom are peptidic in nature, and they act over different ionic channels and membrane receptors. Initial studies using mixture of venom collected from dissected venom ducts concluded that the venom from the same species do not exhibit unusual peptide polymorphism [Olivera, Hillyard, et al., 1995] and that the only major difference between individuals of the same species are different concentrations of the venom components [Vianna, et al., 2005]. For this study, peptides in the injected venom were collected from individual snails and characterized usin g analytical RP-HPLC for a maximum of three years. The different fractions collected were processed through capillary HPLC coupled with Q-TOF ESI-MS, and compared with analytical RP-HPLC fractions processed with MALDI-TOF MS. This study demonstrates that there is an animal-to-animal variation in the peptide components of the injected venom. The injected venom remains relatively constant over time for specific specimens in captivity. Finally, there are some peptides that had been found in all specimens both by MALDI-TOF MS and by ESI-MS. In this study, these peptides are called "molecular fingerprint" peptides. Based on matches of their derived masses to those predicted by published cDNA sequences, nine novel peptides were putatively identified. This study establishes that variations due to enzymatic posttranslational modification are omitted when we consider only information extrapolated from cDNA. / The results of this study support the idea of the existence of a novel regulatory mechaism to expressed specific venom peptides for injection into the prey. / by Jose A. Rivera-Ortiz. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
83

Discovery and biological characterization of conotoxins from the venom of Conus Brunneus in Drosophila Melanogaster

Unknown Date (has links)
Cone snails are venomous marine predators whose venom is a complex mixture of modified peptides (conopeptides). Conopeptides have direct specificity towards voltage- and ligand-gated ion channels and G-protein coupled receptors. More specifically, alpha conotoxins target nicotinic acetylcholine receptors (nAChR) and are of great interest as probes for different nAChR subtypes involved in a broad range of neurological function. Typically, the amount of peptide provided directly from the cone snails (from either dissected or “milked” venom) is minimal, thus hindering the wide use of bioassay-guided approaches for compound discovery. Biochemical-based approaches for discovery by means of identification and characterization of venom components can be used due to their compatibility with the small quantities of cone snail venom available; however, no direct assessment of the bioactivity can be gleaned from these approaches. Therefore, newly discovered conotoxins must be acquired synthetically, which can be difficult due to their complicated folding motifs. The ability to test small quantities of peptide for bioactivity during the purification process can lead to the discovery of novel components using more direct approaches. Presented here is the description of use of an effective method of bioassay-guided fractionation for the discovery of novel alpha conotoxins as well as further biological characterization of other known alpha conotoxins. This method requires minimal amounts of sample and evaluates, via in vivo electrophysiological measurements, the effect of conotoxins on the functional outputs of a well-characterized neuronal circuit in Drosophila melanogaster known as the giant fiber system. Our approach uses reversed-phase HPLC fractions from venom dissected from the ducts of Conus brunneus in addition to synthetic alpha conotoxins. Fractions were individually tested for activity, re-fractionated, and re-tested to narrow down the compound responsible for activity. A novel alpha conotoxin, bru1b, was discovered via the aforementioned approach. It has been fully characterized in the giant fiber system through the use of mutant flies, as well as tested in Xenopus oocytes expressing nicotinic acetylcholine channels and against the acetylcholine binding protein. Other well-known alpha conotoxins have also been characterized in the giant fiber system. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
84

Isolation and characterization of novel conopeptides from the marine cone snail: Conus brunneus

Unknown Date (has links)
by Fred. C. Pflueger. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliographical references at end of each chapter. / Cone snails are predatory marine gastropods that use venom for means of predation and defense. This venom is a complex mixture of conopeptides that selectivity binds to ion channels and receptors, giving them a wide range of potential pharmaceutical applications. Conus brunneus is a wide spread Eastern Pacific cone snail species that preys upon worms (vermivorous). Vermivorous cone snails have developed very specific biochemical strategies for the immobilization of their prey and their venom has not been extensively studied to date. The main objective of this dissertation is the characterization of novel conopeptides isolated from Conus brunneus. Chapter 1 is an introduction and background on cone snails and conopeptides. Chapter 2 details the isolation and characterization of a novel P-superfamily conotoxin. Chapter 3 presents the 3D solution structure of the novel P-superfamily conotoxin. Chapter 4 details the isolation and characterization of two novel M-superfamily conotoxins. Chapter 5 covers the use of nano-NMR to characterize a novel P-superfamily conotoxin using nanomole quantities of sample. Chapter 6 is a reprint of a paper published in the Journal of the American Chemical Society in which we combined and implemented techniques developed in the previous chapters to report the presence of D-(Sd(B-Hydroxyvaline in a polypeptide chain. This dissertation contains the first reported work of a P-superfamily structure obtained directly from the crude venom therefore accurately representing native post-translational modifications. In this paper, crude cone snail venom was characterized by: high performance liquid chromatography, nuclear magnetic resonance spectroscopy, nanonuclear magnetic resonance spectroscopy, mass spectrometry, amino acid analysis, Edman degradation sequencing, and preliminary bioassays.
85

Isocation and characterization of conotoxins from the venom of Conus Planorbis and Conus Ferrugineus

Unknown Date (has links)
The venom of marine gastropods belonging to the genus Conus has yielded numerous structurally and functionally diverse peptidic components. The increase variety of bioactive peptides identified in cone snail venoms is the product of the variety of molecular adaptations taken by Conus species in evolving neuroactive molecules to suit their diverse biological purposes. Toxins from cone snails are classified into two major groups. One group consists of disulfide-rich peptides commonly termed conotoxins; the second group comprises peptides with only one disulfide bond or none. In this work, we present the discovery and characterization from the marine snails C. planorbis and C. ferrugineus. Both species are commonly found in the Indo-Pacific region and are very similar and is not distinguishable by size and shape of the shell. Novel P and T-Supefamiles were found in both species along with small linear peptides with have a high frequency of tyrosine residues. Each chapter contains a detailed look at the discovery process for the isolation and characterization of C. planorbis and C. ferrugineus. At discussion part, we also compared the peptides isolated in this work with other peptides from the literature. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
86

FUNCTIONAL MORPHOLOGY OF REPRODUCTION IN SELECTED NEOGASTROPODS FROM THE PUERTO PENASCO REGION OF SONORA, MEXICO

Houston, Roy Seamands, 1942- January 1974 (has links)
No description available.
87

Growth rate study of some tropical marine invertebrates.

Axelsen, Fritz. January 1968 (has links)
No description available.
88

Rhogocytes in larval gastropods

Stewart, Heather 30 August 2012 (has links)
Rhogocytes of gastropod larvae are described from TEM images. These cells were found in the planktotrophic larvae of Amphissa columbiana, Trichotropis cancellata, Marsenina stearnsii (Caenogastropoda) and Nerita melanotragus (Neritimorpha) but not in Siphonaria denticulata (Heterobranchia). Previously these uniquely molluscan cells had been described in adult and direct developing larval gastropods only. Multiple functions have been proposed for rhogocytes, the most well supported being hemocyanin (HCN) synthesis. HCN was found within vacuoles of the rhogocytes of N. melanotragus but not within the caenogastropods. Caenogastropod rhogocytes may export HCN immediately after synthesis or they may synthesize a different protein product. Rhogocytes may be homologous with terminal cells of protonephridia, the latter used for excretion and osmoregulation. The presence of these two in gastropod larvae may be functionally related to larval body size. Large caenogastropod and neritimorph larvae have rhogocytes but not protonephridia, whereas the smaller heterobranch larvae have protonephridia but not rhogocytes. / Graduate
89

The shell of the whelk Buccinum undatum L shape analysis and sex discrimination /

Hallers-Tjabbes, Catharina Carolina ten. January 1979 (has links)
Thesis--Groningen. / Summary in English and Dutch. "Stellingen" inserted. Bibliography: p. 120-129.
90

Ecology of chemical defenses of algae against the herbivorous snail, Littorina littorea, in the New England rocky intertidal community /

Geiselman, Joy Ann. January 1980 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1980. / Supervised by John M. Teal. Vita. Includes bibliographical references (p. 187-206).

Page generated in 0.0758 seconds