• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of non-perturbative methods for supersymmetric and non-supersymmetric quantum field theories

Brown, William Elvis January 1998 (has links)
No description available.
2

Test of Gauge Invariance: Charged Harmonic Oscillator in an Electromagnetic Field

Wen, Chang-tai 08 1900 (has links)
The gauge-invariant formulation of quantum mechanics is compared to the conventional approach for the case of a one-dimensional charged harmonic oscillator in an electromagnetic field in the electric dipole approximation. The probability of finding the oscillator in the ground state or excited states as a function of time is calculated, and the two approaches give different results. On the basis of gauge invariance, the gauge-invariant formulation of quantum mechanics gives the correct probability, while the conventional approach is incorrect for this problem. Therefore, expansion coefficients or a wave function cannot always be interpreted as probability amplitudes. For a physical interpretation as probability amplitudes the expansion coefficients must be gauge invariant.
3

Quantum Geometry of Topological Phases of Matter

Ying-Kang Chen (11535235) 22 November 2021 (has links)
Quantum Hall states are prototypical topological states of matter whose Hall conductance is topologically quantized to an integer or rational fraction multiple of the fundamental conductance quantum. A significant consequence of this quantization is that the Hall conductance value can be made independent of variations from device to device, within acceptable limits. Such topologically quantized properties are thus highly desirable for metrology or industrial purposes. Formulating a microscopic picture of fractional quantum Hall states and the characterization of all topological responses of quantum Hall states are frontier areas of condensed matter research, with far reaching technological consequences such as realizing anyonic topological quantum computation. In this dissertation, I will present my research on these topics.<br>
4

Perturbations of dark energy models

Elmufti, Mohammed January 2012 (has links)
>Magister Scientiae - MSc / The growth of structure in the Universe proceeds via the collapse of dark matter and baryons. This process is retarded by dark energy which drives an accelerated expansion of the late Universe. In this thesis we use cosmological perturbation theory to investigate structure formation for a particular class of dark energy models, i.e. interacting dark energy models. In these models there is a non-gravitational interaction between dark energy and dark matter, which alters the standard evolution (with non-interacting dark energy) of the Universe. We consider a simple form of the interaction where the energy exchange in the background is proportional to the dark energy density. We analyse the background dynamics to uncover the e ect of the interaction. Then we develop the perturbation equations that govern the evolution of density perturbations, peculiar velocities and the gravitational potential. We carefully account for the complex nature of the perturbed interaction, in particular for the momentum transfer in the dark sector. This leads to two di erent types of model, where the momentum exchange vanishes either in the dark matter rest-frame or the dark energy rest-frame. The evolution equations for the perturbations are solved numerically, to show how structure formation is altered by the interaction.
5

Gauge-invariant magnetic properties from the current / Détermination de propriétés magnétiques invariantes de jauge à partir de la densité de courant

Raimbault, Nathaniel 04 November 2015 (has links)
De nombreux phénomènes physiques ne peuvent être compris qu'en s'intéressant à la structure électronique. Cette dernière peut être interprétée en termes de propriétés électromagnétiques, chacune de ces propriétés révélant diverses informations sur le système étudié. Il est donc important d'avoir des outils efficaces afin de calculer de telles propriétés. C'est dans ce contexte que cette thèse a été écrite, notre principal objectif ayant été de développer une méthode générale donnant accès à une vaste gamme de propriétés électromagnétiques. Dans la première partie de cette thèse, nous décrivons le socle théorique au sein duquel nous travaillons, en particulier la théorie de la fonctionnelle de la densité de courant dépendante du temps (TDCDFT), qui est une approche qui permet de décrire la réponse du système à un champ magnétique. La seconde partie est consacrée à la méthode que nous avons mise au point pour calculer diverses propriétés magnétiques en préservant l'invariance de jauge. Nous démontrons en particulier qu'en utilisant une simple règle de somme, il est possible de placer les courants diamagnétique et paramagnétique sur un pied d'égalité, évitant par là même les écueils habituels intrinsèques au calcul de propriétés magnétiques, comme la dépendance en l'origine de la jauge du vecteur potentiel. Nous illustrons notre méthode en l'appliquant notamment au calcul de la magnétisabilité et du dichroïsme circulaire, qui est une propriété possédant d'importantes applications pratiques, notamment en biologie. Dans la dernière partie, plus exploratoire, nous tentons d'étendre notre formalisme aux systèmes périodiques. Nous y discutons plusieurs stratégies afin de calculer l'aimantation dans des systèmes décrits par des conditions aux limites périodiques. / Various phenomena of matter can only be understood by probing its electronic structure. The latter can be interpreted in terms of electromagnetic properties, each property revealing a different piece of information. Having a reliable method to calculate such properties is thus of great importance. This thesis is to be regarded in this context. Our main goal was to develop a general method that gives access to a wide variety of electromagnetic properties. In the first part of this thesis, we describe the theoretical background with which we work, and in particular time-dependent current-density-functional theory (TDCDFT), which is a density-functional approach that can describe the response due to a magnetic field. The second part is dedicated to the method we developed in order to calculate various magnetic properties in a gauge-invariant manner. In particular, we show that by using a simple sum rule, we can put the diamagnetic and paramagnetic currents on equal footing. We thus avoid the usual problems that arise when calculating magnetic properties, such as the dependence on the gauge origin of the vector potential. We illustrate our method by applying it to the calculation of magnetizabilities and circular dichroism, which has important applications, notably in biology. In the last part, which is more explorative, we aim at extending our formalism to periodic systems. We discuss several strategies to calculate magnetization in systems described with periodic boundary conditions.
6

INTERPLAY OF GEOMETRY WITH IMPURITIES AND DEFECTS IN TOPOLOGICAL STATES OF MATTER

Guodong Jiang (10703055) 27 April 2021 (has links)
The discovery of topological quantum states of matter has required physicists to look beyond Landau’s theory of symmetry-breaking, previously the main paradigm for<br>studying states of matter. This has led also to the development of new topological theories for describing the novel properties. In this dissertation an investigation in this<br>frontier research area is presented, which looks at the interplay between the quantum geometry of these states, defects and disorder. After a brief introduction to the topological quantum states of matter considered herein, some aspects of my work in this area are described. First, the disorder-induced band structure engineering of topological insulator surface states is considered, which is possible due to their resilience from Anderson localization, and believed to be a consequence of their topological origin.<br>Next, the idiosyncratic behavior of these same surface states is considered, as observed in experiments on thin film topological insulators, in response to competition between<br>hybridization effects and an in-plane magnetic field. Then moving in a very different direction, the uncovering of topological ‘gravitational’ response is explained: the<br>topologically-protected charge response of two dimensional gapped electronic topological states to a special kind of 0-dimensional boundary – a disclination – that encodes spatial curvature. Finally, an intriguing relation between the gravitational response of quantum Hall states, and their response to an apparently unrelated perturbation – nonuniform electric fields is reported. <br>

Page generated in 0.0753 seconds