1 |
gcn.MOPS: accelerating cn.MOPS with GPUAlkhamis, Mohammad 16 June 2017 (has links)
cn.MOPS is a model-based algorithm used to quantitatively detect copy-number variations in next-generation, DNA-sequencing data. The algorithm is implemented as an R package and can speed up processing with multi-CPU parallelism. However, the maximum achievable speedup is limited by the overhead of multi-CPU parallelism, which increases with the number of CPU cores used. In this thesis, an alternative mechanism of process acceleration is proposed. Using one CPU core and a GPU device, the proposed solution, gcn.MOPS, achieved a speedup factor of 159× and decreased memory usage by more than half. This speedup was substantially higher than the maximum achievable speedup in cn.MOPS, which was ∼20×. / Graduate / 0984 / 0544 / 0715 / alkhamis@uvic.ca
|
Page generated in 0.0468 seconds