• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patterning the zebrafish visual system requires the actions of Pbx transcription factors, and a downstream growth factor, Gdf6a

French, Curtis Robert 11 1900 (has links)
The zebrafish visual system relies on positional information in the retina and optic tectum, so that the spatial fidelity of light signals that enter the eye are preserved for visual processing. This positional information is essential for ordered topographic mapping of retinal ganglion cell axons. Spatial information in the retina and tectum relies on discrete signaling pathways that regulate polarized expression of axon guidance molecules in distinct domains in both the retina and tectum, thereby ensuring that accurate topographic maps are created. In this thesis, I have investigated the function of two families of transcription factors, Pbx and Meis, as well as a growth factor of the Bmp family, Gdf6a, in specifying positional identity in the zebrafish visual system. I demonstrate that two partially redundant pbx genes, pbx2 and pbx4, along with members of the meis family, are required for patterning of the dorsal retina and tectum in zebrafish. Embryos lacking these critical transcription factors exhibit retinal ganglion cell axon outgrowth errors, which are likely the result of tectal mis-patterning. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling remains unclear. In this thesis, I investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity. Knockdown of zebrafish Gdf6a blocks initiation of dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity, and loss of such identity leads to errors in retinal ganglion cell topographic mapping. Finally, I demonstrate that gdf6a is required for numerous embryonic processes in addition to dorsal retina specification. Gdf6a in required for eye growth, as loss of Gdf6a function leads to microphthalmia. I have obtained preliminary evidence that this growth factor is also required for development of the lens and axial skeleton. Furthermore, many of these phenotypes are similar to those seen in human patients with mutations in GDF6, highlighting the importance of understanding the function of this growth factor in model organisms. / Molecular Biology and Genetics
2

Patterning the zebrafish visual system requires the actions of Pbx transcription factors, and a downstream growth factor, Gdf6a

French, Curtis Robert Unknown Date
No description available.

Page generated in 0.0207 seconds