• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 22
  • 11
  • 11
  • 10
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 38
  • 34
  • 32
  • 32
  • 30
  • 29
  • 28
  • 24
  • 24
  • 23
  • 23
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Applications of gel electrophoresis in quantum dot conjugates' separation and purification

Wang, Luxin. Fan, Xudong. Mustapha, Azlin. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 19, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis advisor: Dr. Xudong Fan and Dr. Azlin Mustapha. Includes bibliographical references.
22

New strategies for proteomics and peptidomics using polymer liquid crystals for electrophoresis

AL-Sayah, Mohammad Ahmed. Rill, Randolph L. January 2004 (has links)
Thesis (Ph. D.)--Florida State University, 2004. / Advisor: Dr. Randolph Rill, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed Jan. 13,2005). Includes bibliographical references.
23

Effect of Shear Rate and Mixing Time on Starch/Polyacrylamide Gels as Retention Aids

Cracolici, Benedict January 2004 (has links) (PDF)
No description available.
24

Proteomic Analysis Of Listeria Monocytogenes

Mujahid, Sana 15 December 2007 (has links)
Listeria monocytogenes is a deadly, Gram-positive foodborne pathogen that is ubiquitous in the environment. The bacterium expresses a number of virulence and stress adaptation proteins that support its pathogenic capabilities. Two-dimensional gel electrophoresis (2-DE) was used to map L. monocytogenes surface proteins, which play a central role in virulence, and to examine protein expression by L. monocytogenes grown on ready-to-eat meat, an important source of Listeria infections. A novel method for solubilization of surface proteins from L. monocytogenes for 2-DE was developed. Additionally, the unique proteome expressed by L. monocytogenes grown on a meat matrix was uncovered. The developed solubilization method will facilitate efforts to identify and routinely compare surface proteins of Listeria by 2-DE. Furthermore, the 2-DE database of proteins expressed by L. monocytogenes grown on a meat matrix will allow further understanding of the interactions of Listeria with its food environment that influence its ability to cause disease.
25

Restriction landmark genomic scanning to identify novel methylated and amplified DNA sequences in human lung cancer /

Dai, Zunyan. January 2002 (has links)
No description available.
26

CHARACTERIZATION AND GENOMIC PARTITIONING OF CHLOROPLAST RIBOSOMAL PROTEINS FROM HIGHER PLANTS (NICOTIANA, TABACUM).

CAPEL, MALCOLM SEELY. January 1982 (has links)
Chloroplast and cytoplasmic ribosomes have been isolated from a number of species of the angiosperm genus Nicotiana. Ribosomal subunit and monosome proteins were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Resultant two-dimensional electrophoretic patterns of chloroplast and cytoplasmic ribosomal proteins were processed by a computer algorithm, developed to formally compare different electrophoretic patterns by the construction of two-dimensional, conformal average electrophoretic mobility maps. The chloroplast ribosomal subunit of N. tabacum contains 22-24 distinct basic polypeptides (pI > 5) and 2-3 acidic proteins (pI < 5). The 50S chloroplast ribosomal subunit possesses at least 1 acidic and 33-35 basic proteins. 40S and 60S cytoplasmic ribosomal subunits of the same species have 26-30 and 47-50 basic polypeptides, respectively. Molecular weights of chloroplast ribosomal proteins (ChRP) and cytoplasmic ribosomal proteins (CyRP) were estimated. There was little similarity between the 2D electrophoretic patterns of ChRP and CyRP of N. tabacum. However, 2D-PAGE patterns of N. tabacum ChRP and CyRP were qualitatively isomorphous with homologous patterns of Chlamydomonas reinhardi, pea and spinach. In terms of molecular weight and electrophoretic pattern N. tabacum ChRP were found to be more closely affiliated with prokaryotic ribosomal proteins than with CyRP from the same species. ChRP were isolated from N. gossei (an Australian species) and its reciprocol interspecies hybrids with N. tabacum (denoted by: T x G and G x T). Interspecies polymorphisms between homologous N. tabacum and N. gossei ChRP were delineated by computerized mobility mapping and co-electrophoresis of radiolabeled N. tabacum ChRP with a large molar excess of N. gossei ChRP. The inheritance mode (Mendelian vs. maternal) of a number of well-defined interspecies ChRP polymorphisms was determined by co-electrophoresis of radioiodinated N. tabacum ChRP with T x G and G x T hybrid ChRP. Results indicate that at least 4 30S ChRP and 3 50S ChRP are encoded by nuclear genes. 30S ChRP from an N. tabacum line carrying a maternally-inherited streptomycin-resistance mutation (SR-1) were compared to N. tabacum 30S ChRP by mobility mapping. Two differences were established between the SR-1 and wild-type 30S ChRP average mobility maps. These findings correlate with the reduced affinity of SR-1 30S chloroplast ribosomal subunits for ('3)H-dihydrostreptomycin, and show that at least one 30S ChRP is encoded by chloroplast DNA. Preparative 2D-PAGE and reverse high performance liquid chromatography (RPHPLC) separation techniques for complex ribosomal protein mixtures were developed. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI
27

DNA PHOTO-CLEAVAGE AND INTERACTIONS BY QUINOLINE CYANINE DYES; TOWARDS IMPROVING PHOTODYNAMIC CANCER THERAPY

Fatemipouya, Tayebeh 14 December 2016 (has links)
Photodynamic therapy (PDT) is a cancer treatment method in which a photosensitizer, light of a particular wavelength, and also oxygen are used to destroy cancerous cells. Cancer cells absorb the photosensitizing agent which is injected into the body, and it is triggered to cause cell destruction upon absorption of light. This occurs because of the excitation of the photosensitizer produces reactive oxygen species that induce a cascade of cellular and molecular events in the body. Photosensitizing agents that can photo-cleave DNA at long wavelengths are highly demanded in PDT, because the long wavelengths of light can penetrate through tissue deeply compared to visible light. While most of the photosensitizers are activated at wavelengths less than 690 nm, penetration of light continues to increase at increasing wavelengths. In this thesis, photosensitizers that can be activated to oxidize DNA with long wavelengths of light will be discussed. Using quinoline cyanine dyes, here we report the first example of DNA photocleavage at a wavelength of light above 800 nm.
28

Screening of protein crystallization by free interface diffusion method on microfluidic systems.

January 2010 (has links)
Li, Yuefang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 46-48). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgement --- p.iii / Table of contents --- p.iv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction to protein crystallization --- p.1 / Chapter 1.1.1 --- Principles of protein crystallization --- p.2 / Chapter 1.1.2 --- Classical methods to crystallize protein --- p.4 / Chapter 1.2 --- Crystal growth in unique environments: the pursuit of better crystals --- p.6 / Chapter 1.2.1 --- Protein crystallization in space --- p.6 / Chapter 1.2.2 --- Crystallization in gel and capillary --- p.7 / Chapter 1.3 --- Microfluidic methods for protein crystallization: high through-put screenings --- p.9 / Chapter 1.3.1 --- Valve-controlled methods --- p.10 / Chapter 1.3.2 --- Droplet-based methods --- p.11 / Chapter 1.3.3 --- Microwell-based methods --- p.11 / Chapter 1.4 --- Objective of the project --- p.13 / Chapter Chapter 2 --- Rehydratable hydrogel in nanoliter microwells --- p.15 / Chapter 2.1 --- Introduction --- p.15 / Chapter 2.2 --- Experimental --- p.17 / Chapter 2.2.1 --- Fabrication of SU-8 mould --- p.17 / Chapter 2.2.2 --- Fabrication of the PDMS device --- p.19 / Chapter 2.2.3 --- Liquid dispensing in PDMS device --- p.20 / Chapter 2.2.4 --- Polymerization of PA gel --- p.21 / Chapter 2.2.5 --- Drying and Rehydration of PA gel --- p.22 / Chapter 2.3 --- Results and discussions --- p.23 / Chapter 2.3.1 --- Preparation of PA gel in PDMS device --- p.23 / Chapter 2.3.2 --- Immobilization of PA gel in microwells --- p.25 / Chapter 2.3.3 --- Dehydration and Rehydration of PA gel --- p.25 / Chapter 2.3.4 --- Liquid dispensing in the gel-preloaded microwells --- p.29 / Chapter 2.4 --- Conclusion --- p.31 / Chapter Chapter 3 --- Protein crystallization by gel-based FID --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.2 --- Experimental --- p.34 / Chapter 3.2.1 --- Conditions used for crystallize proteins --- p.34 / Chapter 3.2.2 --- Protein crystallization by microbatch method --- p.34 / Chapter 3.2.3 --- Protein crystallization in microchip --- p.35 / Chapter 3.3 --- Results and discussions --- p.35 / Chapter 3.3.1 --- Crystallization in microplate --- p.36 / Chapter 3.3.2 --- Crystallization in microwells --- p.38 / Chapter 3.4 --- Conclusion --- p.41 / Chapter Chapter 4 --- Conclusions --- p.43 / Chapter 4.1 --- Summary of the work --- p.43 / Chapter 4.2 --- Future perspectives --- p.44 / Reference --- p.46
29

Isolation and Characterization of Mouse Bone Collagenase Inhibitor

SAKAMOTO, SEIZABURO, NAGAYAMA, MASARU 11 1900 (has links)
No description available.
30

Molecular and physiological responses of <i>salmonella enterica serovar</i> enteritidis ATCC 4931 to <i>trisodium phosphate</i>

Sampathkumar, Balamurugan 08 September 2003
Salmonella species continue to be commonly associated with cases of food-borne disease in developed countries. In the United States in 2001, the incidence per 100,000 people was highest for salmonellosis (15.1), followed by campylobacteriosis (13.8) and shigellosis (6.4). Enteric pathogens usually contaminate the surface of raw animal products during slaughter and primary processing (scalding, defeathering or dehiding, rinsing, cutting, mixing, and grinding, etc.) and can attach and/or reside in the regular and irregular surfaces of the skin, multiply and, thereafter, contaminate food preparation surfaces, hands and utensils. Trisodium phosphate (TSP) has been approved by the USDA as a sanitizer to reduce surface loads of Salmonella on chicken carcasses. A number of studies had demonstrated that TSP effectively removes surface contamination of carcasses by food-borne pathogens. However, very little scientific evidence is available which identifies the actual mechanisms of TSP antimicrobial activity and the response of food-borne pathogens exposed to TSP. This study examined both the physiological and molecular response of Salmonella enterica serovar Enteritidis to TSP treatment. The role of high pH during TSP treatment on its antimicrobial activity was examined. Adaptation of S. enterica serovar Enteritidis to TSP treatment was also examined by analyzing the proteome of serovar Enteritidis cells using two-dimensional gel electrophoresis and mass spectrometry. The role of high pH on the antimicrobial activity of TSP was examined using comparative studies involving treatment solutions containing different concentrations of TSP, treatment solutions adjusted to the equivalent pH as in each of the TSP treatments and TSP solutions pH adjusted to 7.0. Direct and indirect indices of cell survival, membrane damage, and cellular leakage were also employed to examine specific antimicrobial effects. Cell viability, loss of membrane integrity, cellular leakage, release of lipopolysaccharides and cell morphology were accordingly examined and quantified under the above treatment conditions. Exposure of serovar Enteritidis cells to TSP or equivalent alkaline pH made with NaOH resulted in the loss of cell viability and membrane integrity in a TSP concentration- or NaOH-alkaline pH-dependent manner. In contrast, cells treated with different concentrations of TSP whose pH was adjusted to 7.0 did not show any loss of cell viability or membrane integrity. These results indicate that TSP is a potent membrane-acting agent, and provide compelling evidence that high pH during TSP treatment was responsible for its antimicrobial activity. Adaptation of S. enterica serovar Enteritidis with a sublethal concentration of TSP resulted in the induction of the alkaline stress response. Alkaline stress response involves induced thermotolerance, resistance to higher concentrations of TSP, high pH and sensitivity to acid. Examination of the proteome of TSP-adapted cells revealed differential expression of a number of proteins but did not include the common heat shock proteins involved in thermotolerance. However, TSP adaptation caused a shift in the membrane fatty acid composition from unsaturated to a higher saturated and cyclic fatty acid. This shift in fatty acid composition increases the melting point of the cytoplasmic membrane so that it remains functional at high temperatures. Biofilm bacteria are more resistant to sanitizers, heat and antimicrobial agents than their planktonic counterparts. Examination of the proteome of TSP-adapted biofilm cell of S. enterica serovar Enteritidis revealed little overlap in the protein profile compared to TSP-adapted planktonic cells. Proteomic examination of planktonic and biofilm cells of S. enterica serovar Enteritidis revealed differential expression of a number of proteins involved in DNA replication, stress survival and transport of newly synthesized proteins. These results clearly indicate that changes in the expression of specific genes are involved in the biofilm mode of growth, which could play a significant role in resistance to antimicrobial agents. The results of the current study provide a better understanding of the mechanisms of antimicrobial action of TSP and also elucidate the response of S. enterica serovar Enteritidis to TSP and high pH adaptation. The study also raises new questions regarding stress tolerance of S. Enteritidis following TSP or alkaline pH adaptation with relevance to food safety.

Page generated in 0.1003 seconds