• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing-Structure-Property Relationships of a Polymer-Templated Cholesteric Liquid Crystal Exhibiting Dynamic Selective Reflection

Duning, Madeline Marie January 2012 (has links)
No description available.
2

Polymerace za otevření kruhu laktonů a laktidů / Ring-opening Polymerization of Lactones and Lactides

Boháčová, Zdeňka January 2015 (has links)
Medicínské aplikace tvoří z biodegradabilních alifatických polyesterů na bázi polylaktonů, polylaktidů a jejich kopolymerů velmi atraktivní skupinu materiálů. Metody přípravy těchto polymerů jsou založeny na polymeraci za otevření kruhu laktonů a laktidů. Mnoho organokovových sloučenin se vyznačují jako účinné a vysoce selektivní katalyzátory těchto polymerací, avšak je známo, že deriváty těžkých kovů jsou škodlivé pro lidský organismus. Z tohoto důvodu je v dnešní době rostoucí zájem o vývoj účinných „green“ polymeračních systémů pro syntézu biodegradabilních alifatických polyesterů. Předložená disertační práce se věnuje přípravě alifatických polyesterů založených na polykaprolaktonu, polylaktidu, polyglykolidu a zejména jejich kopolymeru pomocí organického katalyzátoru náležícího do skupiny N-heterocyklických karbenů (NHC) bez přítomnosti centrálního atomu těžkého kovu. Literární rešerše je zaměřená na pokroky v polymeraci za otevření kruhu (ROP) cyklických esterů (laktonů a laktidů) pomocí organických "metal-free" katalyzátorů. Nicméně, nebyly nalezeny žádné studie, kde se pro přípravu polyglykolidu nebo jeho kopolymerů využívá polymerace za otevření kruhu pomocí karbenových katalyzátorů. Experimentální část práce popisuje přípravu a vlastnosti 1,3-di-tert-butylimidazol-2-ylidenu (NHC-tBu) karbenu připraveného z jeho stabilní chloridové soli. Další část je zaměřena na přípravu polyesterů z cyklických monomerů, jmenovitě L-laktidu, D, L-laktidu, glykolidu a -kaprolaktonu pomocí NHC-tBu jako katalyzátoru. Byla zkoumána nová metoda přípravy termosenzitivního amfifilního triblokového kopolymeru na bázi biodegradabilního hydrofobního polylaktidu, polyglykolidu a biokompatibilního hydrofilního polyethylenglykolu (PLGA–PEG–PLGA) pomocí připraveného NHC-tBu. Dále byly studovány podmínky polymerace (například: přečištění monomeru, teploty polymerace, různé typy rozpouštědel, poměry rozpouštědla ku monomeru a nebo různé poměry iniciátoru ku katalyzátoru). Na závěr byl připravený PLGA–PEG–PLGA kopolymer srovnán s kopolymerem připraveným pomocí Sn(II)2-ethylhexanoátu. NHC-tBu se v přítomnosti PEG projevil jako účinný katalyzátor polymerace za otevření kruhu laktonu a laktidů. Připravené kopolymery dosahovaly vysoké konverze monomeru (70 – 85%) s polydisperzitou (Mw/Mn okolo 1,2). Byl připraven PLGA–PEG–PLGA kopolymer se dvěma fázovými přechody (sol-gel a gel suspenze) a gelační teplotou v rozmezí 35 – 43 °C. Změny polymeračních podmínek neměly ve většině případů zásadní vliv na chemické vlastnosti kopolymeru, jako jsou molekulová hmotnost nebo polydisperzita, ale měly významný vliv na visko-elastické vlastnosti.
3

Syntéza a charakterizace multifunkcionalizovaných biodegradabilních kopolymerů / Synthesis and Characterization of Multifunctionalized Biodegradable Copolymers

Michlovská, Lenka January 2014 (has links)
Předložená disertační práce shrnuje současné poznatky v oblasti termosenzitivních biodegradabilních kopolymerů, které ve formě vodného solu gelují při teplotě lidského těla. Tyto polymerní materiály jsou použitelné v medicíně pro injekční aplikace jako nosiče léčiv či resorbovatelné implantáty pro regeneraci tkání. V experimentální práci byly pomocí vakuové linky syntetizovány termosenzitivní amfifilní triblokové kopolymery na bázi biodegradabilního hydrofobního polylaktidu a polyglykolidu a biokompatibilního hydrofilního polyethylenglykolu (PLGA–PEG–PLGA). Připravený PLGA–PEG–PLGA kopolymer se dvěma fázovými přechody sol-gel a gel-suspenze byl následně modifikován anhydridem kyseliny itakonové. Výsledný funkcionalizovaný ITA/PLGA–PEG–PLGA/ITA kopolymer obsahuje na koncích řetězců reaktivní dvojné vazby vhodné k další polymeraci či síťování a karboxylové skupiny pro případné modifikace biologicky aktivními látkami. Fyzikální i chemické síťování bylo dále sledováno jak z hlediska poměrů hydrofilního a hydrofobního řetězce, tak i z hlediska množství navázané kyseliny itakonové. Vodné roztoky syntetizovaného ITA/PLGA–PEG–PLGA/ITA kopolymeru gelují v rozmezí teplot 33 - 43 °C. Kritická gelační koncentrace byla 6 % a kritická gelační teplota 34 °C pro kopolymer s poměrem PLGA/PEG = 2,5. Čím je kopolymer více hydrofobní, tím geluje dříve a je více hydrolyticky stabilní. Tuhost gelu stoupá se zvyšujícím se poměrem PLGA/PEG a je závislá na typu rozpouštědla použitého při přečišťování kopolymeru. Připravené ITA/PLGA–PEG–PLGA/ITA makomonomerů byly síťovány pomocí modrého světla bez dalšího síťovadla. Hydrolytická stabilita vzorků modifikovaných pomocí ITA se výrazně zlepšila a zvýšila v přímé úměře jak s rostoucí dobou síťování, tak s množstvím dvojných vazeb na koncích řetězců. Vzorek s 63 mol% ITA síťovaný 40 minut ve vodě zcela zdegradoval po 32 dnech. Protonovou NMR relaxometrií bylo zjištěno, že když vzorek ve vodě nabotnal (po cca 12 hodinách), množství nevázané vody se začalo snižovat a postupně difundovat do kavit na povrchu vzorku a pomalu se měnit na slabě a pevně vázanou vodu na polymerní řetězce. Nicméně, termální stabilita chemicky síťovaných vzorků vzrůstala pouze do 20 minut síťování. Pomocí ATR-FTIR bylo prokázáno, že se přibližně 57 % dvojných vazeb kyseliny itakonové (při vlnové délce 1640 cm-1) přeměnilo na nové jednoduché RR'C-CHR'' vazby při vlnové délce 795 cm-1. Delší čas síťování (nad 30 minut) vedl ke změnám v chemické struktuře pomocí beta-štěpení řetězců a částečné rekombinaci dvojných vazeb. Díky vzniku nových dvojných vazeb v jiných částech řetězce se snížila termální stabilita z 242 °C na 237° C a teplota skelného přechodu z -2,2 na -5.8 °C. Předložená práce popisuje, jak složení polymeru, modifikace funkčními skupinami a fyzikální podmínky ovlivňují fyzikální a chemické síťování připravených amfifilních kopolymerů. Kontrola hydrolytické a termální stability hydrogelů je zapotřebí zejména při uvolňování léčiv a regeneraci tkání.

Page generated in 0.1076 seconds