• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Empirical Likelihood Confidence Intervals for Generalized Lorenz Curve

Belinga-Hill, Nelly E. 28 November 2007 (has links)
Lorenz curves are extensively used in economics to analyze income inequality metrics. In this thesis, we discuss confidence interval estimation methods for generalized Lorenz curve. We first obtain normal approximation (NA) and empirical likelihood (EL) based confidence intervals for generalized Lorenz curves. Then we perform simulation studies to compare coverage probabilities and lengths of the proposed EL-based confidence interval with the NA-based confidence interval for generalized Lorenz curve. Simulation results show that the EL-based confidence intervals have better coverage probabilities and shorter lengths than the NA-based intervals at 100p-th percentiles when p is greater than 0.50. Finally, two real examples on income are used to evaluate the applicability of these methods: the first example is the 2001 income data from the Panel Study of Income Dynamics (PSID) and the second example makes use of households’ median income for the USA by counties for the years 1999 and 2006
2

New Non-Parametric Methods for Income Distributions

Luo, Shan 26 April 2013 (has links)
Low income proportion (LIP), Lorenz curve (LC) and generalized Lorenz curve (GLC) are important indexes in describing the inequality of income distribution. They have been widely used for measuring social stability by governments around the world. The accuracy of estimating those indexes is essential to quantify the economics of a country. Established statistical inferential methods for these indexes are based on an asymptotic normal distribution, which may have poor performance when the real income data is skewed or has outliers. Recent applications of nonparametric methods, though, allow researchers to utilize techniques without giving data the parametric distribution assumption. For example, existing research proposes the plug-in empirical likelihood (EL)-based inferences for LIP, LC and GLC. However, this method becomes computationally intensive and mathematically complex because of the presence of nonlinear constraints in the underlying optimization problem. Meanwhile, the limiting distribution of the log empirical likelihood ratio is a scaled Chi-square distribution. The estimation of the scale constant will affect the overall performance of the plug-in EL method. To improve the efficiency of the existing inferential methods, this dissertation first proposes kernel estimators for LIP, LC and GLC, respectively. Then the cross-validation method is proposed to choose bandwidth for the kernel estimators. These kernel estimators are proved to have asymptotic normality. The smoothed jackknife empirical likelihood (SJEL) for LIP, LC and GLC are defined. Then the log-jackknife empirical likelihood ratio statistics are proved to follow the standard Chi-square distribution. Extensive simulation studies are conducted to evaluate the kernel estimators in terms of Mean Square Error and Asymptotic Relative Efficiency. Next, the SJEL-based confidence intervals and the smoothed bootstrap-based confidence intervals are proposed. The coverage probability and interval length for the proposed confidence intervals are calculated and compared with the normal approximation-based intervals. The proposed kernel estimators are found to be competitive estimators, and the proposed inferential methods are observed to have better finite-sample performance. All inferential methods are illustrated through real examples.

Page generated in 0.1018 seconds