1 |
Performance Modeling, Analysis and Control of Capacitated Re-entrant LinesChoi, Jin Young 09 July 2004 (has links)
This thesis considers the problem of performance modeling, analysis and control of capacitated re-entrant lines. Specifically, the first part of the thesis develops an analytical framework for the modeling, analysis and control of capacitated re-entrant lines, which is based on Generalized Stochastic Petri nets (GSPN) framework. The corresponding scheduling problem is systematically formulated, and the structure of the optimal policy is characterized and compared to that identified for "traditional" re-entrant lines. The second part of thesis addresses the problem of developing a systematic and computationally effective method for computing the optimal scheduling policy for any given configuration of capacitated re-entrant line. Specifically, the underlying scheduling problem is transformed to a Markov Decision Process (MDP) problem and an algorithm that systematically generates the MDP formulation for any given fab configuration is developed. The third part of thesis develops an effective approximating scheme based on the Neuro-Dynamic Programming (NDP) theory. In its general definition, the NDP method seeks the approximation of the optimal relative value function of the underlying MDP formulation by a parameterized function. Hence, an approximating structure for the considered problem is proposed and the quality of the generated approximations is systematically assessed. More specifically, this part of the thesis develops a set of "feature" functions and the mathematical apparatus necessary to evaluate the considered approximating scheme through a numerical experiment. The obtained results indicate that good quality approximations can be achieved by considering a set of features that characterize the distribution of the running process instances to the various processing stages and their lower order interactions. The last part of the thesis exploits the performance models developed in its earlier parts in order to provide an analytical characterization of the optimality of various deadlock resolution strategies for Markovian resource allocation systems under the objective of maximizing throughput.
|
2 |
Modèles de déformation de processus stochastiques généralisés : application à l'estimation des non-stationnarités dans les signaux audioOmer, Harold 18 June 2015 (has links)
Ce manuscrit porte sur la modélisation et l'estimation de certaines non-stationnarités dans les signaux audio. Nous nous intéressons particulièrement à une classe de modèles de sons que nous nommons timbre*dynamique dans lesquels un signal stationnaire, associé au phénomène physique à l'origine du son, est déformé au cours du temps par un opérateur linéaire unitaire, appelé opérateur de déformation, associé à l'évolution temporelle des caractéristiques de ce phénomène physique. Les signaux audio sont modélisés comme des processus gaussiens généralisés et nous donnons dans un premier temps un ensemble d'outils mathématiques qui étendent certaines notions utilisées en traitement du signal au cas des processus stochastiques généralisés.Nous introduisons ensuite les opérateurs de déformations étudiés dans ce manuscrit. L'opérateur de modulation fréquentielle qui est l'opérateur de multiplication par une fonction à valeurs complexes de module unité, et l'opérateur de changement d'horloge qui est la version unitaire de l'opérateur de composition.Lorsque ces opérateurs agissent sur des processus stationnaires les processus déformés possèdent localement des propriétés de stationnarité et les opérateurs de déformation peuvent être approximés par des opérateurs de translation dans les plans temps-fréquence et temps-échelle. Nous donnons alors des bornes pour les erreurs d'approximation correspondantes. Nous développons ensuite un estimateur de maximum de vraisemblance approché des fonctions de dilatation et de modulation. L'algorithme proposé est testé et validé sur des signaux synthétiques et des sons naurels. / This manuscript deals with the modeling and estimation of certain non-stationarities in audio signals. We are particularly interested in a sound class models which we call dynamic*timbre in which a stationary signal, associated with the physical phenomenon causing the sound, is deformed over time by a linear unitary operator, called deformation operator, associated with the temporal evolution of the characteristics of this physical phenomenon.Audio signals are modeled as generalized Gaussian processes. We give first a set of mathematical tools that extend some classical notions used in signal processing in case of generalized stochastic processes.We then introduce the two deformations operators studied in this manuscript. The frequency modulation operator is the multiplication operator by a complex-valued function of unit module and the time-warping operator is the unit version of the composition operator by a bijective function.When these operators act on generalized stationary processes, deformed process are non-stationary generalized process which locally have stationarity properties and deformation operators can be approximated by translation operators in the time-frequency plans and time-scale.We give accurate versions of these approximations, as well as bounds for the corresponding approximation errors.Based on these approximations, we develop an approximated maximum likelihood estimator of the warping and modulation functions. The proposed algorithm is tested and validated on synthetic signals. Its application to natural sounds confirm the validity of the timbre*dynamic model in this context.
|
3 |
Primene polugrupa operatora u nekim klasama Košijevih početnih problema / Applications of Semigroups of Operators in Some Classes of Cauchy ProblemsŽigić Milica 22 December 2014 (has links)
<p>Doktorska disertacija je posvećena primeni teorije polugrupa operatora na rešavanje dve klase Cauchy-jevih početnih problema. U prvom delu smo<br />ispitivali parabolične stohastičke parcijalne diferencijalne jednačine (SPDJ-ne), odredjene sa dva tipa operatora: linearnim zatvorenim operatorom koji<br />generiše <em>C</em><sub>0</sub>−polugrupu i linearnim ograničenim operatorom kombinovanim<br />sa Wick-ovim proizvodom. Svi stohastički procesi su dati Wiener-Itô-ovom<br />haos ekspanzijom. Dokazali smo postojanje i jedinstvenost rešenja ove klase<br />SPDJ-na. Posebno, posmatrali smo i stacionarni slučaj kada je izvod po<br />vremenu jednak nuli. U drugom delu smo konstruisali kompleksne stepene<br /><em>C</em>-sektorijalnih operatora na sekvencijalno kompletnim lokalno konveksnim<br />prostorima. Kompleksne stepene operatora smo posmatrali kao integralne<br />generatore uniformno ograničenih analitičkih <em>C</em>-regularizovanih rezolventnih<br />familija, i upotrebili dobijene rezultate na izučavanje nepotpunih Cauchy-jevih problema viš3eg ili necelog reda.</p> / <p>The doctoral dissertation is devoted to applications of the theory<br />of semigroups of operators on two classes of Cauchy problems. In the first<br />part, we studied parabolic stochastic partial differential equations (SPDEs),<br />driven by two types of operators: one linear closed operator generating a<br /><em>C</em><sub>0</sub>−semigroup and one linear bounded operator with Wick-type multipli-cation. All stochastic processes are considered in the setting of Wiener-Itô<br />chaos expansions. We proved existence and uniqueness of solutions for this<br />class of SPDEs. In particular, we also treated the stationary case when the<br />time-derivative is equal to zero. In the second part, we constructed com-plex powers of <em>C</em>−sectorial operators in the setting of sequentially complete<br />locally convex spaces. We considered these complex powers as the integral<br />generators of equicontinuous analytic <em>C</em>−regularized resolvent families, and<br />incorporated the obtained results in the study of incomplete higher or frac-tional order Cauchy problems.</p>
|
4 |
Generalized stochastic processes with applications in equation solving / Uopšteni stohastički procesi sa primenama u rešavanju jednačinaGordić Snežana 10 May 2019 (has links)
<p>In this dissertation stochastic processes are regarded in the framework of Colombeau-type algebras of generalized functions. Such processes are called Colombeau stochastic processes.The notion of point values of Colombeau stochastic processes in compactly supported generalized points is established. The Colombeau algebra of compactly supported generalized constants is endowed with the topology generated by sharp open balls. The measurability of the corresponding random variables with values in the Colombeau algebra of compactly supported generalized constants is shown.<br />The generalized correlation function and the generalized characteristic function of Colombeau stochastic processes are introduced and their properties are investigated. It is shown that the characteristic function of classical stochastic processes can be embedded into the space of generalized characteristic functions. Examples of generalized characteristic function related to gaussian Colombeau stochastic<br />processes are given. The structural representation of the generalized correlation function which is supported on the diagonal is given. Colombeau stochastic processes with independent values are introduced. Strictly stationary and weakly stationary Colombeau stochastic processes are studied. Colombeau stochastic processes with stationary increments are characterized via their stationarity of the gradient of the process.Gaussian stationary solutions are analyzed for linear stochastic partial differential equations with generalized constant coefficients in the framework of Colombeau stochastic processes.</p> / <p>U disertaciji se stohastički procesi posmatraju u okviru Kolomboove algebre uopštenih funkcija. Takve procese nazivamo Kolomboovi stohastički procesi. Pojam vrednosti Kolomboovog stohastičkog procesa u tačkama sa kompaktnim nosačem je uveden. Dokazana je merljivost odgovarajuće slučajne promenljive sa vrednostima u Kolomboovoj algebri uopštenih konstanti sa kompaktnim nosačem, snabdevenom topologijom generisanom oštrim otvorenim loptama. Uopštena korelacijska funkcija i uopštena karakteristična funkcija Kolomboovog stohastičkog procesa su definisane i njihove osobine su izučavane. Pokazano je da se karakteristična funkcija klasičnog stohastičkog procesa može potopiti u prostor uopštenih karakterističnih funkcija. Dati su primeri uopštenih karakterističnih funkcija gausovskih Kolomboovih stohastičkih procesa. Data je strukturna reprezentacija uopštene korelacijske funkcije sa nosačem na dijagonali. Kolomboovi stohastički procesi sa nezavisnim vrednostima su predstavljeni. Izučavani su strogo stacionarni i slabo stacionarni Kolomboovi stohastički procesi. Kolomboovi stohastički procesi sa stacionarnim priraštajima su okarakterisani preko stacionarnosti gradijenta procesa. Gausovska stacionarna rešenja za linearnu stohastičku parcijalnu diferencijalnu jednačinu sa uopštenim konstantnim koeficijentima su analizirana u okvirima Kolomboovih stohastičkih procesa.</p>
|
Page generated in 0.0937 seconds