1 |
New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated ConditionsAquino, Bryce B 07 November 2014 (has links)
With wind turbines growing in size, operation and maintenance has become a more important area of research with the goal of making wind energy more profitable. Wind turbine blades are subjected to intense fluctuating loads that can cause significant damage over time. The need for advanced methods of alleviating blade loads to extend the lifespan of wind turbines has become more important as worldwide initiatives have called for a push in renewable energy. An area of research whose goal is to reduce the fatigue damage is smart rotor control. Smart bladed wind turbines have the ability to sense aerodynamic loads and compute an actuator response to manipulate the aerodynamics of the wind turbine. The wind turbine model for this research is equipped with two different smart rotor devices. Independent pitch actuators for each blade and trailing edge flaps (TEFs) on the outer 70 to 90% of the blade span are used to modify aerodynamic loads. Individual Pitch Control (IPC) and Individual Flap Control (IFC) are designed to control these devices and are implemented on the NREL 5 MW wind turbine.
The consequences of smart rotor control lie in the wind turbine’s power capture in below rated conditions. Manipulating aerodynamic loads on the blades cause the rotor to decelerate, which effectively decreases the rotor speed and power output by 1.5%. Standard Region 2 generator torque control laws do not take into consideration variations in rotor dynamics which occur from the smart rotor controllers. Additionally, this research explores new generator torque control algorithms that optimize power capture in below rated conditions.
FAST, an aeroelastic code for the simulation of wind turbines, is utilized to test the capability and efficacy of the controllers. Simulation results for the smart rotor controllers prove that they are successful in decreasing the standard deviation of blade loads by 26.3% in above rated conditions and 12.1% in below rated conditions. As expected, the average power capture decreases by 1.5%. The advanced generator torque controllers for Region 2 power capture have a maximum average power increase of 1.07% while still maintaining load reduction capabilities when coupled with smart rotor controllers. The results of this research show promise for optimizing wind turbine operation and increasing profitability.
|
2 |
Automatic Torque Control for Bicycle Driven Brushless DC (BLDC) GeneratorMüller, Luke, Sjöström, Kasper January 2021 (has links)
This work was carried out on behalf of Science Safari. Science Safari wants to create a product that facilitates the understanding of how much physical work is required to create electrical energy. This is done by cranking the pedals of a bicycle. The purpose of this work is to create a control unit that keeps the torque required to crank the pedals close to constant. The torque can be kept constant by creating a variable load for the generator, in this case, a pulse modulated JFET is used. The output of the current sensor and the Hall-effect sensor are used to calculate the required resistance of the JFET to keep constant torque. All this is controlled via a Raspberry Pi 3 Model B (RPi) which also shows real-time values on a display. The functionality of the sensors and JFET has largely been completed, but the assembly of all components is lacking in this work. / Detta arbete är utfört i uppdrag av Science Safari. Science Safari vill skapa en produkt som underlättar förståelsen av hur mycket fysiskt arbete som krävs för att skapa elektrisk energi. Detta genom att användaren vevar på en cykels pedaler för hand. Syftet med detta arbete är att skapa en styrenhet som ungefär håller ett konstantvridmomentet på en cykels pedaler. Vridmomentet kan hållas konstant genom att skapa en variabel last till generatorn, med hjälp av en pulsmodulerad JFET. För att beräkna vilken resistans JFETen ska ha för att hålla konstant vridmoment används en strömsensor och en Hall-effect sensor. Allt detta styrs via en Raspberry Pi 3 ModelB som även visar värden i realtid på en display. Funktionaliteten av sensorerna och JFET har till stor del färdigställts men sammansättning av alla komponenter saknas i detta arbete.
|
Page generated in 0.0809 seconds