31 |
Shadow Price Guided Genetic AlgorithmsShen, Gang 09 March 2012 (has links)
The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed.
|
32 |
Optimizing manoeuvres for long collision avoidance active system of a carGonzalez-Carrascosa Partida, Ricardo January 2013 (has links)
This project presents the development of a collision avoidance active system for cars.There is a large interest in developing avoidance system in the automotive industry since the accidents are of such nature that can be avoided if the system works as desirable e.g., in animal crossing or having the car in front stopping without the driver noticing. A control system is designed to avoid collisions by acting on the steer and brakes of a car. An algorithm is developed to optimize a fuzzy logic controller which actuates on the steer and brakes of the car. The algorithm optimizes the inputs of the car, i.e. steer and brake, to avoid the collision with the object. The optimization of the trajectory implies that the car returns to the original lane and it is the minimum time possible inthe other lane. The object is situated at different distances and the initial speed of the car also varies depending on the situations. The results are obtained by using a car model that is developed in this project in conjunction with the tyre model, [1]. Simulations show that it performs collision avoidance manoeuvres in different conditions. Furthermore, improvements of the present work are suggested that are believed to further enhance the presented algorithm.
|
33 |
Berth Schedule Planning of the Kaohsiung Port by Genetic AlgorithmsTsai, An-Hsiou 09 September 2011 (has links)
For a commercial port, to efficiently schedule the public berths is an important issue. Since a berth schedule would affect the usage of the commercial port, in this thesis, we apply a genetic algorithm to schedule the public berths in order to minimize the total waiting time of vessels. When in the initialization process, we encode the chromosome based on wharf characteristics in order to avoid assigning vessels to inappropriate wharves. After mutation process, we also adjust the usage of wharves to improve the speed of convergence speed. Simulation results show that the proposed algorithm can assign vessels to proper berths as soon as vessels arrive. Compared to the other genetic algorithms, the proposed algorithm obtains better performance in convergence speed and the quality of the solutions.
|
34 |
Application of a spatially referenced water quality model to predict E. coli flux in two Texas river basins, Deepti 15 May 2009 (has links)
Water quality models are applied to assess the various processes affecting the
concentrations of contaminants in a watershed. SPAtially Referenced Regression On
Watershed attributes (SPARROW) is a nonlinear regression based approach to predict
the fate and transport of contaminants in river basins. In this research SPARROW was
applied to the Guadalupe and San Antonio River Basins of Texas to assess E. coli
contamination. Since SPARROW relies on the measured records of concentrations of
contaminants collected at monitoring stations for the prediction, the effect of the
locations and selections of the monitoring stations was analyzed. The results of
SPARROW application were studied in detail to evaluate the contribution from the
statistically significant sources. For verification of SPARROW application, results were
compared to 303 (d) list of Clean Water Act, 2000. Further, a methodology to maintain
the monitoring records of the highly contaminated areas in the watersheds was explored
with the application of the genetic algorithm. In this study, the importance of the
available scale and details of explanatory variables (sources, land-water delivery and
reservoir/ stream attenuation factors) in predicting the water quality processes were also
analyzed. The effect of uncertainty in the monitored records on SPARROW application
was discussed. The application of SPARROW and genetic algorithm were explored to
design a monitoring network for the study area. The results of this study show that
SPARROW model can be used successfully to predict the pathogen contamination of
rivers. Also, SPARROW can be applied to design the monitoring network for the basins.
|
35 |
Optimal Quality Control for Oligo-arrays Using Genetic AlgorithmLi, Ya-hui 17 August 2004 (has links)
Oligo array is a high throughput technology and is widely used in many scopes of biology and medical researches for quantitative and highly parallel measurements of gene expression. When one faulty step occurs during the synthesis process, it affects all probes using the faulty step. In this thesis, a two-phase genetic algorithm (GA) is proposed to design optimal quality control of oligo array for detecting any single faulty step. The first phase performs the wide search to obtain the approximate solutions and the second phase performs the local search on the approximate solutions to achieve the optimal solution. Besides, the proposed algorithm could hold many non-duplicate individuals and parallelly search multiple regions simultaneously. The superior searching capability of the two-phase GA helps us to find out the 275 nonequireplicate cases that settled by the hill-climbing algorithm. Furthermore, the proposed algorithm also discovers five more open issues.
|
36 |
Multiplex PCR Primer Design Using Genetic AlgorithmLiang, Hong-Long 23 August 2004 (has links)
The multiplex PCR experiment is to amplify multiple regions of a DNA sequence at the same time by using different primer pairs. Although, in recent years, there are lots of methods for PCR primer design, only a few of them focus on the multiplex PCR primer design. The multiplex PCR primer design is a tedious task since there are too many constraints to be satisfied. A new method for multiplex PCR primer design strategy using genetic algorithm is proposed. The proposed algorithm is able to find a set of suitable primer pairs more efficient and uses a MAP model to speed up the examination of the specificity constraint. The dry-dock experiment shows that the proposed algorithm finds several sets of primer pairs for multiplex PCR that not only obey the design properties, but also have specificity.
|
37 |
Duality and Genetic Algorithms for the Worst-Case-Coverage Deployment Problem in Wireless Sensor NetworksPeng, Yi-yang 21 July 2005 (has links)
In this thesis, we propose and evaluate algorithms for solving the worst-case-coverage deployment problem in ad-hoc wireless sensor networks. The worst-case-coverage deployment problem is to deploy additional sensors in the wireless sensor field to optimize the worst-case coverage. We derive a duality theorem that reveals the close relation between the maximum breach path and the minimum Delaunay cut. The duality theorem is similar to the well-known max-flow-min-cut theorem in the field of network optimization. The major difference lies in the fact that the object function we study in this paper is nonlinear rather than linear. Based on the duality theorem, we propose an efficient dual algorithm to solve the worst-case-coverage deployment problem. In addition, we propose a genetic algorithm for deploying a number of additional sensors simultaneously. We use analytical proofs and simulation results to justify the usage of the proposed approaches.
|
38 |
Relativity Gene Algorithm For Multiple Faces Recognition SystemWu, Gi-Sheng 30 August 2006 (has links)
The thesis illustrates the development of DSP-based ¡§Relativity Gene Algorithm For Multiple Faces Recognition System". The recognition system is divided into three systems: Ellipsoid location system of multiple human faces, Feature points and feature vectors extraction system, Recognition system algorithm of multiple human faces. Ellipsoid location system of multiple human faces is using CCD camera or digital camera to capture image data which will be recognized in any background, and transmitting the image data to SRAM on DSP through the PPI interface on DSP. Then, using relatively genetic algorithm with the face color of skin and ellipsoid information locate face ellipses which are any location and size in complex background. Feature points and feature vectors extraction system finds facial feature points in located human face by many image process skills. Recognition system algorithm of multiple human faces is using decision by majority. Using characteristic vectors compares every vector in the database. Then, we draw out the highest ID. The recognizable result is over. The experimental result of the developed recognition system demonstrates satisfied and efficiency.
|
39 |
Parameter Calibration for the Tidal Model by the Global Search of the Genetic AlgorithmChung, Shih-Chiang 12 September 2006 (has links)
The current study has applied the Genetic Algorithm (GA) for the boundary parameters calibration in the hydrodynamic-based tidal model. The objective is to minimize the deviation between the estimated results acquired from the simulation model and the real tidal data along Taiwan coast. The manual trial-error has been widely used in the past, but such approach is inefficient due to the complexity posed by the tremendous amounts of parameters. Fortunately, with the modern computer capability, some automatic searching processes, in particular GA, can be implemented to handle the large data set and reduce the human subjectivity when conducting the calibration. Besides, owing to the efficient evolution procedures, GA can find better solutions in a shorter time compared to the manual approach. Based on the preliminary experiments of the current study, the integration of GA with the hydrodynamic-based tidal model can improve the accuracy of simulation.
|
40 |
A Test Data Evolution Strategy under Program ChangesHsu, Chang-ming 23 July 2007 (has links)
Since the cost of software testing has continuously accounted for large proportion of the software development total cost, automatic test data generation becomes a hot topic in recent software testing research. These researches attempt to reduce the cost of software testing by generating test data automatically, but they are discussed only for the single version programs not for the programs which are needed re-testing after changing. On the other hand, the regression testing researches discuss about how to re-test programs after changing, but they don¡¦t talk about how to generate test data automatically. Therefore, we propose an automatic test data evolution strategy in this paper. We use the method of regression testing to find out the part of programs which need re-testing, then automatic evolutes the test data by hybrid genetic algorithm. According to the experiment result, our strategy has the same or better testing ability but needs less cost than the other strategies.
|
Page generated in 0.0796 seconds