• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification of H. Pylori in Saliva by a Nested PCR Assay Derived From a Newly Cloned DNA Probe

Jiang, C, Li, C, Ha, T, Ferguson, D. A., Chi, D. S., Laffan, J. J., Thomas, E. 01 June 1998 (has links)
A novel probe was developed from genomic DNA of Helicobacter pylori ATCC type strain 43629. It hybridized with all 73 H. pylori clinical isolates tested but not with any of 183 non-H. pylori DNAs in dot blot hybridization. Typing tests revealed 41 different HaeIII-digestion patterns from 57 H. pylori strains tested. Based on the sequence of the probe, a nested PCR was developed that detected as little as 2 fg of H. pylori DNA or approximately equivalent to one cell. No PCR products were amplified from any of 21 non-H. pylori strains tested. Using this nested PCR, H. pylori DNA was detected in 33 of 45 (73%) saliva samples collected from patients with gastric H. pylori infection. These data suggest that the probe is useful for typing H. pylori and that the nested PCR is a valuable tool for detecting H. pylori DNA in saliva.
12

Avanços no diagnóstico genético da puberdade precoce central / Advances in the genetic diagnosis of central precocious puberty

Pazolini, Marina Cunha Silva 20 July 2018 (has links)
Avanços recentes na etiologia da puberdade precoce foram obtidos a partir da análise do genoma por sequenciamento global. Mutações inativadoras do gene MKRN3 representam uma causa importante de puberdade precoce central (PPC) familial (33-46% dos casos). O objetivo do estudo foi a análise do DNA genômico de pacientes com PPC de origem familial ou esporádica sem mutações deletérias no gene MKRN3. Foram selecionados 68 indivíduos com PPC (37 com a forma familial e 31, aparentemente, esporádicos). O DNA genômico foi extraído do sangue periférico ou da saliva dos pacientes com PPC. A técnica de sequenciamento genômico em larga escala (ILLUMNA -Clonal Single Molecule Array Technology - CSMA) foi usada na busca de novos genes implicados com o desenvolvimento puberal prematuro em seis indivíduos, sendo três afetados e três não afetados, pertencentes a uma grande família brasileira com PPC (Família 1). Mutações em um gene candidato foram pesquisadas em 64 pacientes por sequenciamento automático direto (método de Sanger). Em um subgrupo de pacientes, foi realizada a técnica de MLPA com sondas customizadas na busca de deleções. Por sequenciamento genômico global, foi identificado um novo complexo rearranjo no gene DLK1, caracterizado por uma deleção de, aproximadamente, 14.000 pb na região 5\' não traduzida (5\'UTR), englobando o início do exon 1, associada a uma duplicação de uma região do intron 3 de 269 pb. O gene DLK1 está localizado no braço longo do cromossomo 14 (14q32.2) e sofre imprinting materno. Este lócus está associado à síndrome de Temple, uma doença complexa com múltiplas manifestações, incluindo puberdade precoce central em até 90% dos casos. Para investigar o efeito dessa deleção genômica, as concentrações séricas da proteína DLK1 pelo método ELISA foram medidas nas pacientes afetadas da Família 1. Valores indetectáveis de DLK1 foram encontrados nestas pacientes. O fenótipo das pacientes afetadas da Família 1 caracterizou-se por uma PPC típica, sem sinais sindrômicos (excluída a síndrome de Temple). Posteriormente, por meio do sequenciamento direto, duas novas mutações inativadoras no gene DLK1 foram identificadas (p.Val272Cysfs*14 e p.Pro160Leufs*50) em duas famílias (Famílias 2 e 3) com PPC ou história de menarca precoce. O estudo de segregação nas Famílias 1 e 2 confirmou o padrão de herança autossômico dominante com penetrância completa e transmissão exclusiva pelo alelo paterno. A média de idade de início da puberdade nas pacientes afetadas do sexo feminino foi de 5,4 anos. A técnica de MLPA com sondas customizadas para o gene DLK1 não encontrou outras deleções no subgrupo estudado. Em conclusão, foram identificadas três mutações inativadoras no gene DLK1 associadas à PPC familial de origem paterna. O DLK1 é o segundo gene imprintado associado a distúrbios puberais em humanos. Este achado sugere um papel dos genes imprintados no controle da puberdade. O mecanismo pelo qual esse gene afeta a puberdade ainda é desconhecido / Recent advances in the etiology of precocious puberty were obtained from the whole-genome sequencing analysis. Inactivating mutations of the MKRN3 gene represent a major cause of familial central precocious puberty (CPP) (33%- 46% of the cases). The objective of the study was to analyze the genomic DNA of patients with familial or sporadic CPP without deleterious mutations in the MKRN3 gene. Sixty-eight individuals with CPP (37 with familial form and 31 apparently sporadic cases) were selected. The genomic DNA was extracted from the peripheral blood or saliva of patients with CPP. We used the whole-genomic sequencing technique (ILLUMNA - Clonal Single Molecule Array Technology - CSMA) searching for a new candidate genes implicated in premature pubertal development in 6 individuals, 3 affected and 3 non-affected, belonging to a large Brazilian family with CPP (Family 1). Mutations in one candidate gene were investigated in 64 patients through automatic sequencing (Sanger\'s method). In a subgroup of patients, MLPA using synthetic MLPA probes was performed to search for deletions. A new complex rearrangement in the DLK1 gene characterized by a deletion of approximately 14.000pb in the 5\' untranslated (5\'UTR), encompassing the start of exon 1, associated with a duplication of a region of intron 3 of 269 bp was identified by whole-genomic sequencing. The DLK1 gene is located on the long arm of chromosome 14 (14q32.2) and it is maternally imprinted gene. This locus is associated with Temple syndrome, a complex disorder with multiple alterations, including central precocious puberty in up to 90% of cases. To investigate the effect of this genomic deletion, a serum measurement of DKL1 protein using ELISA method was performed in the affected patients from Family 1. Undetectable serum DLK1 levels were found in these patients. The phenotype of affected patients from Family 1 was characterized by a typical CPP, without syndromic signs (excluding Temple syndrome). Posteriorly, two new inactivating mutations in the gene DLK1 were identified (p.Val272Cysfs*14 and p.Pro160Leufs*50) through direct sequencing in two families (Families 2 and 3) with CPP or precocious menarche history. The segregation studies in Families 1 and 2 confirmed the pattern of dominant autosomal inheritance with complete penetrance and exclusive transmission by the paternal allele. The average age of puberty onset in the affected female patients was 5.4 years. The MLPA technique with synthetic MLPA probes for the DLK1 gene did not find other deletions in the studied subgroup. In conclusion, we identified 3 paternally inherited inactivating mutations in the DLK1 gene associated with familial CPP. The DLK1 is the second imprinted gene associated with pubertal disorders in humans. This finding suggests a role of the imprinted genes in puberty control. The mechanism through which this gene affects puberty is still unknown
13

Molecular characterization of Chinese medicinal materials.

January 2005 (has links)
Yip Pui Ying. / Thesis submitted in: November 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 147-184). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgment --- p.v / Abbreviations --- p.vii / Table of contents --- p.viii / List of Figures --- p.xii / List of Tables --- p.xvii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1. --- The importance of characterization of Chinese medicinal materials and the development of Chinese medicine in Hong Kong --- p.1 / Chapter 1.2. --- Methods for characterization of Chinese medicinal materials --- p.5 / Chapter 1.3. --- Molecular characterization of Chinese medicinal materials --- p.8 / Chapter 1.3.1. --- DNA sequencing --- p.9 / Chapter 1.3.2. --- DNA fingerprinting --- p.14 / Chapter 1.3.3. --- Nucleic acid hybridization --- p.19 / Chapter 1.4. --- Objectives --- p.20 / Chapter Chapter 2 --- Characterization of Plant and Fungal Materials by rDNA ITS Sequence Analysis --- p.22 / Chapter 2.1. --- Introduction --- p.22 / Chapter 2.2. --- Materials and Methods --- p.22 / Chapter 2.2.1. --- Chinese medicinal materials used in this study --- p.22 / Chapter 2.2.1.1. --- Plants and fungi for interspecific ITS study --- p.22 / Chapter 2.2.1.2. --- Plant for intraspecific ITS study and locality study --- p.33 / Chapter 2.2.2. --- Extraction of total DNA --- p.35 / Chapter 2.2.3. --- PCR amplification of ITS1 and ITS2 regions of rRNA gene --- p.35 / Chapter 2.2.4. --- Purification of PCR products --- p.38 / Chapter 2.2.5. --- Cloning using pCR-Script´ёØ Amp SK(+) Cloning Kit --- p.38 / Chapter 2.2.5.1. --- Polishing --- p.38 / Chapter 2.2.5.2. --- Ligation of inserts into pCR-Script´ёØ Amp SK(+) cloning vector --- p.38 / Chapter 2.2.5.3. --- Transformation --- p.40 / Chapter 2.2.5.4. --- PCR screening of white colonies --- p.40 / Chapter 2.2.5.5. --- Purification of PCR screening products --- p.41 / Chapter 2.2.6. --- Sequencing of ITS regions --- p.41 / Chapter 2.2.6.1. --- Cycle sequencing reaction --- p.41 / Chapter 2.2.6.2. --- Purification of sequencing extension products --- p.41 / Chapter 2.2.6.3. --- Electrophoresis by genetic analyzer --- p.42 / Chapter 2.2.7. --- Sequence analysis and alignment --- p.42 / Chapter 2.3. --- Results --- p.42 / Chapter 2.3.1. --- Extraction of total DNA --- p.42 / Chapter 2.3.2. --- PCR amplification of ITS1 and ITS2 regions of rRNA gene --- p.44 / Chapter 2.3.2.1. --- Interspecific ITS study --- p.44 / Chapter 2.3.2.2. --- Intraspecific ITS study --- p.46 / Chapter 2.3.3. --- Sequence analysis and alignment --- p.47 / Chapter 2.3.3.1. --- Interspecific ITS study --- p.47 / Chapter 2.3.3.2. --- Intraspecific ITS study --- p.56 / Chapter 2.4. --- Discussions --- p.60 / Chapter 2.4.1. --- rDNA regions used for studying Chinese medicinal materials --- p.60 / Chapter 2.4.2. --- The results agreed with previously published works --- p.60 / Chapter 2.4.3. --- Explanation of interspecific results within the Ganoderma genus --- p.60 / Chapter 2.4.4. --- Implications from interspecific comparisons --- p.60 / Chapter 2.4.5. --- Implications from intraspecific comparisons --- p.61 / Chapter Chapter 3 --- .Characterization of Astragalus membranaceus by DNA Fingerprinting / Chapter 3.1 --- Introduction --- p.62 / Chapter 3.2 --- Materials and Methods --- p.62 / Chapter 3.2.1 --- Extraction of total DNA --- p.62 / Chapter 3.2.2 --- Generation and detection of DNA fingerprints by AP-PCR --- p.63 / Chapter 3.2.3 --- Analysis of DNA fingerprints --- p.63 / Chapter 3.3 --- Results --- p.63 / Chapter 3.3.1 --- Generation of DNA fingerprints by AP-PCR --- p.63 / Chapter 3.3.2 --- Fingerprint analysis --- p.69 / Chapter 3.4 --- Discussion --- p.85 / Chapter 3.4.1 --- RP-PCR has been used on Chinese medicinal materials --- p.85 / Chapter 3.4.2 --- AP-PCR used instead of RAPD --- p.85 / Chapter 3.4.3 --- Reproducibility and amount of bands --- p.86 / Chapter 3.4.4 --- Alternatives of electrophoresis process --- p.88 / Chapter 3.4.5 --- Explanation of results --- p.88 / Chapter 3.4.6 --- Distinguishing Neimengu and Shanxi samples --- p.89 / Chapter 3.4.7 --- Further studies --- p.90 / Chapter Chapter 4 --- Characterization of Plant and Fungal Materials by DNA-DNA Hybridization on Microarrays --- p.91 / Chapter 4.1 --- Introduction --- p.91 / Chapter 4.2 --- Materials and Methods --- p.92 / Chapter 4.2.1 --- Samples for microarray study --- p.92 / Chapter 4.2.2 --- Extraction of total DNA --- p.95 / Chapter 4.2.3 --- Amplification and sequencing of ITS 1 region of rRNA gene --- p.95 / Chapter 4.2.4 --- Preparation of labeled probe --- p.95 / Chapter 4.2.5 --- Amplification of ITS1 fragments --- p.97 / Chapter 4.2.6 --- Preparation of slides --- p.103 / Chapter 4.2.7 --- Hybridization and washing --- p.104 / Chapter 4.2.8 --- Scanning and data analysis --- p.105 / Chapter 4.3 --- Results --- p.105 / Chapter 4.3.1 --- DNA extraction --- p.105 / Chapter 4.3.2 --- Amplification and sequencing of ITS1 region of rRNA gene --- p.107 / Chapter 4.3.3 --- Preparation of labeled probe and amplification of ITS1 fragments… --- p.112 / Chapter 4.3.4 --- Preparation of slides --- p.112 / Chapter 4.3.5 --- Scanning and data analysis --- p.116 / Chapter 4.4 --- Discussion --- p.134 / Chapter 4.4.1 --- Implications --- p.134 / Chapter 4.4.2 --- Applying the findings --- p.134 / Chapter 4.4.3 --- Ways to maximize specificity --- p.137 / Chapter 4.4.4 --- Optimisation --- p.138 / Chapter 4.4.5 --- Microarray may be more advantageous over sequencing --- p.138 / Chapter Chapter Five --- General Discussion and Summary --- p.140 / Chapter 5.1. --- Objectives of this study --- p.140 / Chapter 5.2. --- rDNA ITS sequencing --- p.140 / Chapter 5.2.1. --- Description of the approach and summary of the results --- p.140 / Chapter 5.2.2. --- Implications from the results --- p.140 / Chapter 5.2.3. --- Advantages and limitations of DNA sequencing --- p.141 / Chapter 5.3. --- AP-PCR fingerprinting --- p.141 / Chapter 5.3.1. --- Description of the approach and summary of the results --- p.141 / Chapter 5.3.2. --- Advantages and limitations of DNA fingerprinting --- p.142 / Chapter 5.4. --- DNA-DNA hybridization on microarrays --- p.143 / Chapter 5.4.1. --- Description of the approach and summary of the results --- p.143 / Chapter 5.4.2. --- Implications from the results --- p.143 / Chapter 5.4.3. --- Advantages and limitations of DNA hybridization on microarrays. --- p.144 / Chapter 5.5. --- Overall summary --- p.144 / Chapter 5.6. --- Future studies --- p.146 / References --- p.147 / Appendix --- p.185
14

Avanços no diagnóstico genético da puberdade precoce central / Advances in the genetic diagnosis of central precocious puberty

Marina Cunha Silva Pazolini 20 July 2018 (has links)
Avanços recentes na etiologia da puberdade precoce foram obtidos a partir da análise do genoma por sequenciamento global. Mutações inativadoras do gene MKRN3 representam uma causa importante de puberdade precoce central (PPC) familial (33-46% dos casos). O objetivo do estudo foi a análise do DNA genômico de pacientes com PPC de origem familial ou esporádica sem mutações deletérias no gene MKRN3. Foram selecionados 68 indivíduos com PPC (37 com a forma familial e 31, aparentemente, esporádicos). O DNA genômico foi extraído do sangue periférico ou da saliva dos pacientes com PPC. A técnica de sequenciamento genômico em larga escala (ILLUMNA -Clonal Single Molecule Array Technology - CSMA) foi usada na busca de novos genes implicados com o desenvolvimento puberal prematuro em seis indivíduos, sendo três afetados e três não afetados, pertencentes a uma grande família brasileira com PPC (Família 1). Mutações em um gene candidato foram pesquisadas em 64 pacientes por sequenciamento automático direto (método de Sanger). Em um subgrupo de pacientes, foi realizada a técnica de MLPA com sondas customizadas na busca de deleções. Por sequenciamento genômico global, foi identificado um novo complexo rearranjo no gene DLK1, caracterizado por uma deleção de, aproximadamente, 14.000 pb na região 5\' não traduzida (5\'UTR), englobando o início do exon 1, associada a uma duplicação de uma região do intron 3 de 269 pb. O gene DLK1 está localizado no braço longo do cromossomo 14 (14q32.2) e sofre imprinting materno. Este lócus está associado à síndrome de Temple, uma doença complexa com múltiplas manifestações, incluindo puberdade precoce central em até 90% dos casos. Para investigar o efeito dessa deleção genômica, as concentrações séricas da proteína DLK1 pelo método ELISA foram medidas nas pacientes afetadas da Família 1. Valores indetectáveis de DLK1 foram encontrados nestas pacientes. O fenótipo das pacientes afetadas da Família 1 caracterizou-se por uma PPC típica, sem sinais sindrômicos (excluída a síndrome de Temple). Posteriormente, por meio do sequenciamento direto, duas novas mutações inativadoras no gene DLK1 foram identificadas (p.Val272Cysfs*14 e p.Pro160Leufs*50) em duas famílias (Famílias 2 e 3) com PPC ou história de menarca precoce. O estudo de segregação nas Famílias 1 e 2 confirmou o padrão de herança autossômico dominante com penetrância completa e transmissão exclusiva pelo alelo paterno. A média de idade de início da puberdade nas pacientes afetadas do sexo feminino foi de 5,4 anos. A técnica de MLPA com sondas customizadas para o gene DLK1 não encontrou outras deleções no subgrupo estudado. Em conclusão, foram identificadas três mutações inativadoras no gene DLK1 associadas à PPC familial de origem paterna. O DLK1 é o segundo gene imprintado associado a distúrbios puberais em humanos. Este achado sugere um papel dos genes imprintados no controle da puberdade. O mecanismo pelo qual esse gene afeta a puberdade ainda é desconhecido / Recent advances in the etiology of precocious puberty were obtained from the whole-genome sequencing analysis. Inactivating mutations of the MKRN3 gene represent a major cause of familial central precocious puberty (CPP) (33%- 46% of the cases). The objective of the study was to analyze the genomic DNA of patients with familial or sporadic CPP without deleterious mutations in the MKRN3 gene. Sixty-eight individuals with CPP (37 with familial form and 31 apparently sporadic cases) were selected. The genomic DNA was extracted from the peripheral blood or saliva of patients with CPP. We used the whole-genomic sequencing technique (ILLUMNA - Clonal Single Molecule Array Technology - CSMA) searching for a new candidate genes implicated in premature pubertal development in 6 individuals, 3 affected and 3 non-affected, belonging to a large Brazilian family with CPP (Family 1). Mutations in one candidate gene were investigated in 64 patients through automatic sequencing (Sanger\'s method). In a subgroup of patients, MLPA using synthetic MLPA probes was performed to search for deletions. A new complex rearrangement in the DLK1 gene characterized by a deletion of approximately 14.000pb in the 5\' untranslated (5\'UTR), encompassing the start of exon 1, associated with a duplication of a region of intron 3 of 269 bp was identified by whole-genomic sequencing. The DLK1 gene is located on the long arm of chromosome 14 (14q32.2) and it is maternally imprinted gene. This locus is associated with Temple syndrome, a complex disorder with multiple alterations, including central precocious puberty in up to 90% of cases. To investigate the effect of this genomic deletion, a serum measurement of DKL1 protein using ELISA method was performed in the affected patients from Family 1. Undetectable serum DLK1 levels were found in these patients. The phenotype of affected patients from Family 1 was characterized by a typical CPP, without syndromic signs (excluding Temple syndrome). Posteriorly, two new inactivating mutations in the gene DLK1 were identified (p.Val272Cysfs*14 and p.Pro160Leufs*50) through direct sequencing in two families (Families 2 and 3) with CPP or precocious menarche history. The segregation studies in Families 1 and 2 confirmed the pattern of dominant autosomal inheritance with complete penetrance and exclusive transmission by the paternal allele. The average age of puberty onset in the affected female patients was 5.4 years. The MLPA technique with synthetic MLPA probes for the DLK1 gene did not find other deletions in the studied subgroup. In conclusion, we identified 3 paternally inherited inactivating mutations in the DLK1 gene associated with familial CPP. The DLK1 is the second imprinted gene associated with pubertal disorders in humans. This finding suggests a role of the imprinted genes in puberty control. The mechanism through which this gene affects puberty is still unknown

Page generated in 0.0496 seconds