• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 51
  • 18
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 419
  • 419
  • 125
  • 104
  • 68
  • 68
  • 63
  • 60
  • 53
  • 40
  • 39
  • 38
  • 38
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Analysis of the RB pathway in growth and cell cycle control /

Weng, Li. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Cancer Biology, December 2002. / Includes bibliographical references. Also available on the Internet.
232

Regulation of squamous differentiation by the E2F family of transcription factors /

Wong, Chung Fai. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
233

The structure of the chromatin axis during transcription

Ericsson, Christer. January 1988 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1988. / Extra t.p. with thesis statement inserted. Includes bibliographical references.
234

The nuclear actions of IGFBP-3

Lin, Wan-Jung, January 2006 (has links) (PDF)
Thesis (M.S.)--Washington State University, August 2006. / Includes bibliographical references (p. 46-53).
235

SLC23A1, the gene encoding sodium-dependent vitamin C transport protein 1 (SVCT1) : regulation of transcription and its functional consequences /

Michels, Alexander Johannes. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 129-137). Also available on the World Wide Web.
236

The induction of apoptosis by the E2F1 transcription factor and the emergence of a role for E2F1 in the DNA double strand break response

Powers, John Thomas, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
237

Mss11p mediated regulation of transcription, pseudohyphal differentiation and flocculation in Saccharomyces cerevisiae

Franken, Jaco (Cornelius Jacobus) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: In all cellular systems the ability to alter eellular programs in response to extracellular cues is essential for survival. This involves the integration of signals triggered by membrane bound receptors in order to adjust the expression of target genes and enzyme activities and consequently phenotypic outcome. The yeast Saccharomyces cerevisiae has evolved several adaptations, such as, sporulation and pseudohyphal differentiation, in order to survive changes in the surrounding environment. Pseudohyphal differentiation and the related phenotype, invasive growth, are proposed to be adaptations that enable the yeast to forage for scarce nutrients or escape from a detrimental environment. This dimorphic transition is associated with a change from the normal "yeast" form to a pseudohyphal form, which involves changes in budding pattern, cell-cycle progression, cellular elongation, and cell-eell and cell-substrate adherence. The outcome of these changes is elongated eells, which bud in a unipolar fashion and do not separate after budding to form chains of cells referred to as pseudohyphae. These pseudohyphae are able to penetrate the surface of agar containing growth medium, a process referred to as invasive growth. Nutrient-induced adaptations, such as pseudohyphal growth, have been extensively studied in S. cere visiae , and several factors have been implicated in the regulation thereof, many of which are part of specific signalling pathways. The most clearly defined are the filamentous growth specific MAP kinase cascade and the Gpa2p-cAMP-PKA pathway. MUC1/FL011, encoding a member of a family of cell wall associated proteins involved in cellcell/ cell-substrate adhesion, is regulated by these pathways and considered to be critical in the establishment of pseudohyphal differentiation and invasive growth. The promoter region of MUC1/FL011 represents one of the largest yeast promoters identified to date, with cis-acting elements present up to 2.4 kb upstream from the first coding triplet. The upstream regulatory region of MUC1/FL011 is almost identical to that of the STA2 gene, which encodes an extracellular glucoamylase required for the utilisation of extracellular starch. As suggested by the extent of homology between these two promoters, MUC1/FL011 and STA2 are co-regulated to a large degree and both require the same transcription factors. Mss11p plays a central role in the regulation of MUC1/FL011 and STA2 and consequently starch metabolism and pseudohyphaI differentiation. The regulation conferred by MSS11 on the transcriptional levels of MUC1/FL011 and STA2 also appears to be dependent on signals generated specifically in the presence of low nitrogen and glucose. Mss11p does not have significant homology to any other yeast protein, with the exception of limited homology to the transcriptional activator F108p. However, several distinctive domains have been identified in the MSS11 gene product. Firstly, Mss11p contains polyglutamine and poly-asparagine domains. It also contains a putative ATP- or GTP-binding domain (P-Ioop), commonly found in proteins such as kinases, ATPases or GTPases. Two short stretches close to the N-terminal, labelled H1 and H2, share significant homology to the transcriptional activator, F108p. Both the H2 domain and the extreme C-terminal of Mss11p are able to stimulate RNA polymerase II dependent transcription. Furthermore, the H1 domain together with the P-Ioop negatively regulates the activation potential of the H2 domain. This study presents further insight into the functioning of Mss11p and the involvement of the separate activation and regulatory domains in mediating transcriptional activation and pseudohyphal differentiation in response to nutrient limitation. Genetic interactions between Mss11p and other factors involved in the regulation of pseudohyphal growth and starch degradation were revealed, and specific regions of Mss11p were shown to be required by these factors in order to achieve their required function. In addition, results obtained in this study implicates Mss11p in the regulation of Ca2+-dependent flocculation and suggest that the FL01 gene is also regulated by Mss11p in this capacity. / AFRIKAANSE OPSOMMING: Die vermoë om sellulêre programme in reaksie op ekstrasellulêre seine te verander, is 'n essensiële vereiste vir alle sellulêre sisteme. Dit behels die integrasie van seine gegenereer deur membraan-gebonde reseptore om ekspressie van teikengene en ensiemaktiwiteite sodanig aan te pas dat gewenste fenotipise uitkomste bewerkstellig kan word. Die gis Saccharomyces cerevisiae het verskeie aanpassingsmeganismes ontwikkel, soos byvoorbeeld sporulasie en pseudohifeforming, om veranderinge in die omgewing te kan oorleef. Pseudohifevorming en die verwante fenotipe, penetrasiegroei, word beskou as aanpassings te wees wat die gis in staat stel om van 'n skadelike omgewing weg te kom, of dit in staat te stelom by skaars voedingstowwe uit te kom. Hierdie dimorfiese transisie word geassosieer met 'n verandering van die normale "gisvorm" tot pseudohifevorming wat veranderinge in die botpatroon, selsiklusprogressie, selverlenging, sel-sel en sel-substraat aanhegting behels. Die uitkoms van hierdie verandering is verlengde selle, wat unipolêr bot en nie van mekaar skei nie om sodoende kettings van selle te vorm en waarna verwys word as pseudohifes. Hierdie pseudohifes is ook in staat om die oppervlak van 'n agar bevattende groeimedium te penetreer, 'n proses waarna verwys word as penetrasiegroei. Aanpassings soos pseudohitevorminq is die afgelope dekade intensief nagevors, en verskeie faktore en seintransduksienetwerke is in die regulering daarvan geïmpliseer. Onder hierdie seintransduksienetwerke is die bes gedefiniëerde paaie die filamentasie-spesifieke MAP-kinasekaskade en die Gpa2p-cAMP-PKA pad. MUC1/FL011 kodeer vir 'n lid van 'n geenfamilie wat met sel-sel/sel-substraat aanhegting geasosieer word en dit word deur hierdie seintransduksie netwerke gereguleer. MUC1/FL011 word as essensieel vir pseudohife vorming beskou. MUC1/FL011 word gereguleer deur die grootste gispromoter wat tot op hede geïdentifiseer is, met cis-werkende elemente so ver as 2.4 kb stroom-op van ATG. Die MUC1/FL011 promoter is feitlik identies tot die van die STA2-geen, wat kodeer vir 'n ekstrasellulêre glukoamilase wat die gis in staat stelom ekstrasellulêre stysel te benut. Weens die homologie tussen die twee promoters, word MUC1/FL011 en STA2 tot In groot mate ge-koreguleer en beide benodig dieselfde transkripsiefaktore. Mss11p speel In sentrale rol in die regulering van MUC1/FL011 en STA2 en dus ook in die regulering van pseudohifevorming en styselmetabolisme. Die regulering wat deur Mss11p of MUC1/FL011 en STA2 uitgeofen word, blyk verder onderhewig te wees aan seine wat gegenereer word spesifiek in die teenwoordigheid van lae konsentrasies glukose en stikstof. Mss11p het nie betekenisvolle homologie met enige ander gisproteïen nie, behalwe vir beperkte homologie met die tranksripsionele aktiveerder F108p. Verskeie onderskeidbare domeine is egter in die MSS11 geenproduk teenwoordig. Eerstens, Mss11p bevat kenmerkende poliglutamien en poli-asparagien domeine. Verder bevat Mss11p ook In voorspelde ATP- of GTP-bindings domein (P-Ius), wat algemeen in proteïene soos kinases, ATPasaes en GTPases voorkom. Twee kort areas naby die N-terminaal, aangedui as H1 en H2, het betekenisvolle homologie met die transkripsiefaktor F108p. Beide die H2 domein en die ektreme C-terminaal van Mss11p is in staat om RNA polimerase " afhanklike transkripsie te stimuleer. Verder het die H1-domein in samewerking met die P-Ius In negatiewe uitwerking op die aktiveringspotensiaal van die H2-domein. Hierdie studie bied verdere insig tot die werking van Mss11p en die betrokkenheid van die verskeie aktiverings- en reguleringsdomeine by die oemiddetlinq van transkripsionele aktivering en pseudohifevorming in reaksie op beperking van voedingstowwe. Genetiese interaksies tussen Mss11p en ander faktore betrokke met die regulering van pseudohifevorming en styselafbraak is in hierdie studie aangetoon. Voorts is daar ook gewys dat spesifieke areas van Mss11p benodig word deur hierdie faktore om hulle biologiese funksie uit te oefen. Daar is ook In rol vir Mss11p in die regulering van Ca2+-afhanklike flokkulasie aangetoon en daar is bewys dat die FL01 geen deur Mss11p benodig word om hierdie effek uit te oefen.
238

A kinetic analysis of transcription initiation by the Bacillus subtilis sigma-43 RNA polymerase : the effect of the delta subunit

Dobinson, Katherine Frances January 1986 (has links)
The initiation of transcription by the Bacillus subtilis sigma-M3 RNA polymerase at two Bacillus phage ɸ29 promoters and the effect of the delta subunit on initiation have been investigated by an in vitro kinetic analysis. The templates for the analysis were plasmids which carried the ɸ29 A2 or G2 promoter. The cloning and localization of the A2 promoter are reported here. The kinetics of RNA synthesis initiation were examined using a single-round run-off transcription assay in which multiple initiation events at a single promoter were inhibited with heparin. It was observed that the formation of heparin-resistant complexes at the A2 promoter required the presence of the initiating nucleotides, while the RNA polymerase alone was able to form heparin-resistant, non-initiated complexes at the G2 promoter. The G2 promoter was also shown by a competition assay to be a stronger promoter than A2. The effect of the delta subunit on complex formation at the two promoters was investigated with the single-round transcription assay. Delta had no effect on the formation of initiation complexes at the G2 promoter but lowered the rate and extent of complex formation at the A2 promoter. The effect of delta on the kinetic parameters of complex formation at the A2 promoter was also investigated. The data suggested that delta affects the efficiency with which the enzyme/promoter complexes undergo the transition(s) to a complex from which RNA synthesis can be initiated, although other interpretations were possible. A model for the effect of delta is proposed, in which it is postulated that the release of delta from the enzyme/promoter complex is essential for initiation. Enzyme which is associated with delta can interact with both the A2 and G2 promoters but complexes at the weaker A2 promoter do not efficiently release delta, thus slowing the formation of initiation complexes. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
239

Studies on the transcription of photosynthesis genes of the photosynthetic bacterium Rhodobacter capsulatus

Forrest, Mary Elspet January 1988 (has links)
Rhodobacter capsulatus is a Gram negative bacterium that exhibits a variety of growth modes, including chemoheterotrophic growth and photoheterotrophic growth. Upon a shift of cultures from high to low oxygen concentrations the photosynthetic apparatus is synthesized and incorporated into the inner membrane. The puf operon contains genes that encode structural proteins found in the light-harvesting and reaction center complexes. In a preliminary attempt to pinpoint the location of the puf promoter R. capsulatus RNA polymerase was purified by standard techniques and used in in vitro runoff transcription assays. It was found that the polymerase was capable of specific transcription with linearized pUC13 DNA but no specific transcription could be obtained with K capsulatus DNA. It was concluded that some factor or condition necessary for specific transcription with R capsulatus DNA was absent from these assays. The location of the puf promoter was subsequently found through a series of deletions and oligonucleotide-directed mutations in the 5' region of the puf operon. Fragments that contained these mutations were placed translationally in-frame with the lacZ gene of Escherichia coli in plasmids that could be conjugated into K capsulatus. Assays of beta-galactosidase activities under low and high oxygen conditions resulted in localization of the promoter to a position approximately 540 basepairs upstream of what was previously believed to be the first gene of the operon, the pufB gene. RNA 5' end-mapping experiments showed that the quantity of RNA transcripts obtained were comparable to the lacZ activities. The existence of multiple low abundance RNA 5' ends prompted the theory that the primary transcript has a short half-life, and is rapidly processed to yield a more stable transcript with a 5' end that maps just upstream of the pufB gene. It was found that only the 5' end nearest to the promoter could be capped by guanylyl transferase, and this could only be detected when the putative processing sites were deleted. The DNA sequence between the promoter and the pufB gene contains a new gene of the puf operon, the pufO gene. Deletion of this gene showed that it plays an essential role in the formation of mature light-harvesting and reaction center complexes. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
240

Cellulase gene transcription in Cellulomonas fimi and an Agrobacterium

Greenberg, Norman Michael January 1988 (has links)
Transcriptional analysis was used to investigate the molecular mechanisms which effect cellulase gene expression in the gram-positive bacterium Cellulomonas fimi strain ATCC 484 and the gram-negative bacterium Agrobacterium sp. strain ATCC 21400. The cenA, cex and cenB genes of C. fimi encoding the extracellular β-1,4-endoglucanase, EngA (EC 3.2.1.4; Mr 48,700), the extracellular β-1, 4-exoglucanase, Exg (EC 3.2.1.91; Mr 47,300) and the extracellular β-1,4-endoglucanase EngB (EC 3.2.1.4; Mr 110,000) respectively, were characterised. By northern blot analysis, cenA mRNA was detected in C. fimi RNA prepared from glycerol- and carboxymethylcellulose (CMC)-grown cells but not in RNA from glucose-grown cells. The cex mRNA was found only in RNA from CMC-grown cells. The cenB mRNA was found in all three preparations of RNA. Therefore, the expression of these genes is subject to regulation by the carbon source provided to C. fimi. High resolution nuclease SI protection studies with unique 5'-labeled DNA probes and C. fimi RNA isolated in vivo, were used to map the 5' termini of cenA and cex mRNAs. Two cenA mRNA 5' ends, 11 bases apart, mapped 51 and 62 bases upstream of the cenA start codon, suggesting that in vivo, cenA transcription was directed from two promoters in tandem. The cex mRNA 5' end was found to map 28 bases upstream of the cex start codon. Using SI mapping with unlabeled DNA probes and C. fimi RNA which had been isolatedin vivo but which had been 5'-labeled in vitro with vaccinia virus capping enzyme confirmed that true transcription initiation sites for cenA and cex mRNA had been identified. The SI mapping revealed mRNA 3' termini 1,438, 1,449, and 1, 464 bases from the major cenA start site, and one 3' terminus 1,564 bases from the major cex mRNA start site, in good agreement with the northern blot data. High resolution SI studies were also used to show that abundant mRNA 5' ends mapped upstream of the cenB start codon in RNA prepared from CMC-grown cells, while less-abundant species mapped 52 bases closer to the ATG codon in RNA prepared from C. fimi grown on any one of the three substrates. These results seem to indicate a tandem promoter arrangement with an ATG-proximal promoter directing low-level constitutive cenB transcription and a more distal promoter directing higher levels of cenB transcription as a result of C. fimi growth on cellulosic substrate. Steady- state levels were determined for cenA, cex and cenB mRNAs with RNA prepared from glycerol-, glucose-, and CMC-grown cultures of C. fimi in slot-blot hybridisations with radiolabeled oligodeoxyribonucleotide probes. A cex-linked gene (clg) was identified by sequence inspection and SI mapping. Transcripts of the abg gene encoding the β-glucosidase (Abg, EC 3.2.2.21/ Mr 50,000) of Agrobacterium sp. strain ATCC 21400 were also characterised. Northern blot analysis of Agrobacterium RNA revealed the size of the in vivo abgmRNA was approximately 1,500 bases in length. High resolution SI mapping determined abg mRNA 5' ends 22 bases upstream of the abg ATG codon and 3' ends 71 bases downstream of the abg stop codon. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate

Page generated in 0.1172 seconds