• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glycosaminoglycans and their sulfate derivatives differentially regulate the viability and gene expression of osteocyte-like cell lines

Tsourdi, Elena, Salbach-Hirsch, Juliane, Rauner, Martina, Rachner, Tilman D., Möller, Stephanie, Schnabelrauch, Matthias, Scharnweber, Dieter, Hofbauer, Lorenz C. 11 October 2019 (has links)
Collagen and glycosaminoglycans, such as hyaluronan and chondroitin sulfate, are the major components of bone extracellular matrix, and extracellular matrix composites are being evaluated for a wide range of clinical applications. The molecular and cellular effects of native and sulfatemodified glycosaminoglycans on osteocytes were investigated as critical regulators of bone remodeling. The effects of glycosaminoglycans on viability, necrosis, apoptosis, and regulation of gene expression were tested in two osteocyte-like cell lines, the murine MLO-Y4 and the rat UMR 106-01 cells. Glycosaminoglycans were non-toxic and incorporated by osteocytic cells. In MLO-Y4 cells, sulfation of glycosaminoglycans led to a significant inhibition of osteocyte apoptosis, 42% inhibition for highly sulfated chondroitin sulfate and 58% for highly sulfated hyaluronan, respectively. Cell proliferation was not affected. While treatment with highly sulfated chondroitin sulfate increased cell viability by 20% compared to the native chondroitin sulfate. In UMR 106- 01 cells, treatment with highly sulfated hyaluronan reduced the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio by 58% compared to the non-sulfated form, whereas highly sulfated chondroitin sulfate led to 60% reduction in the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio in comparison to the native chondroitin sulfate. The expression of SOST, the gene encoding sclerostin, was reduced by 50% and 45% by highly sulfated hyaluronan and chondroitin sulfate, respectively, compared to their native forms. The expression of BMP- 2, a marker of osteoblast differentiation, was doubled after treatment with the highly sulfated hyaluronan in comparison to its native form. In conclusion, highly sulfated glycosaminoglycans inhibit osteocyte apoptosis in vitro and promote an osteoblast-supporting gene expression profile.

Page generated in 0.0636 seconds