• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 92
  • 49
  • 22
  • 15
  • 10
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 550
  • 102
  • 95
  • 88
  • 88
  • 88
  • 43
  • 40
  • 37
  • 34
  • 33
  • 33
  • 33
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Seismic tomographic full-waveform inversion for the Vrancea sinking lithosphere structure using the adjoint method.

Baron, Julie <1987> 07 May 2014 (has links)
The Vrancea region, at the south-eastern bend of the Carpathian Mountains in Romania, represents one of the most puzzling seismically active zones of Europe. Beside some shallow seismicity spread across the whole Romanian territory, Vrancea is the place of an intense seismicity with the presence of a cluster of intermediate-depth foci placed in a narrow nearly vertical volume. Although large-scale mantle seismic tomographic studies have revealed the presence of a narrow, almost vertical, high-velocity body in the upper mantle, the nature and the geodynamic of this deep intra-continental seismicity is still questioned. High-resolution seismic tomography could help to reveal more details in the subcrustal structure of Vrancea. Recent developments in computational seismology as well as the availability of parallel computing now allow to potentially retrieve more information out of seismic waveforms and to reach such high-resolution models. This study was aimed to evaluate the application of a full waveform inversion tomography at regional scale for the Vrancea lithosphere using data from the 1999 six months temporary local network CALIXTO. Starting from a detailed 3D Vp, Vs and density model, built on classical travel-time tomography together with gravity data, I evaluated the improvements obtained with the full waveform inversion approach. The latter proved to be highly problem dependent and highly computational expensive. The model retrieved after the first two iterations does not show large variations with respect to the initial model but remains in agreement with previous tomographic models. It presents a well-defined downgoing slab shape high velocity anomaly, composed of a N-S horizontal anomaly in the depths between 40 and 70km linked to a nearly vertical NE-SW anomaly from 70 to 180km.
182

Early Warning For Large Earthquakes: Observations, Models and Real-Time Data Analysis

Colombelli, Simona <1986> 07 May 2014 (has links)
This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.
183

Spatial Patterns of Soil Organic Carbon Distribution in Canadian Forest Regions: An Eco-region Based Exploratory Analysis

Li, Junzhu January 2013 (has links)
As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass or the atmosphere. The goal of this study is to examine spatial patterns of soil organic carbon (SOC) in Canadian forest area at an eco-region scale and to explore its relationship with different ecological variables. In this study, the first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, Normalized Difference Vegetation Index (NDVI), slope, aspect, and elevation. Additionally, an eco-region framework established by the Environment Canada was adopted in this study for SOC distribution assessment. Exploratory spatial data analysis techniques, with an emphasis on spatial autocorrelation analysis, were employed to explore how forest SOC was spatially distributed in Canada. Correlation analysis and spatial regression analysis were applied to determine the most dominant ecological factors influencing SOC distribution in different eco-regions. At the national scale, a spatial error model was built up to adjust for spatial effects and to estimate SOC patterns based on ecological and ecosystem property factors. Using the significant variables derived in the spatial error model, a predictive SOC map in Canadian forest area was generated. Findings from this study suggest that high SOC clusters tend to occur in coastal areas, while low SOC clusters occur in western boreal eco-region. In Canadian forest area, SOC patterns are strongly related to precipitation regimes. Although overall SOC distribution is influenced by both climatic and topographic variables, distribution patterns are shown to differ significantly among eco-regions, thus verifying the eco-region classification framework for SOC zonation mapping in Canada.
184

Seismic sequences analysis for estimation of earthquake source parameters: corner frequency, stress drop, and seismic moment observations

Munafo', Irene <1982> 07 May 2014 (has links)
The present study has been carried out with the following objectives: i) To investigate the attributes of source parameters of local and regional earthquakes; ii) To estimate, as accurately as possible, M0, fc, Δσ and their standard errors to infer their relationship with source size; iii) To quantify high-frequency earthquake ground motion and to study the source scaling. This work is based on observational data of micro, small and moderate -earthquakes for three selected seismic sequences, namely Parkfield (CA, USA), Maule (Chile) and Ferrara (Italy). For the Parkfield seismic sequence (CA), a data set of 757 (42 clusters) repeating micro-earthquakes (0 ≤ MW ≤ 2), collected using borehole High Resolution Seismic Network (HRSN), have been analyzed and interpreted. We used the coda methodology to compute spectral ratios to obtain accurate values of fc , Δσ, and M0 for three target clusters (San Francisco, Los Angeles, and Hawaii) of our data. We also performed a general regression on peak ground velocities to obtain reliable seismic spectra of all earthquakes. For the Maule seismic sequence, a data set of 172 aftershocks of the 2010 MW 8.8 earthquake (3.7 ≤ MW ≤ 6.2), recorded by more than 100 temporary broadband stations, have been analyzed and interpreted to quantify high-frequency earthquake ground motion in this subduction zone. We completely calibrated the excitation and attenuation of the ground motion in Central Chile. For the Ferrara sequence, we calculated moment tensor solutions for 20 events from MW 5.63 (the largest main event occurred on May 20 2012), down to MW 3.2 by a 1-D velocity model for the crust beneath the Pianura Padana, using all the geophysical and geological information available for the area. The PADANIA model allowed a numerical study on the characteristics of the ground motion in the thick sediments of the flood plain.
185

Numerical modeling of the Alto Tiberina low angle normal fault

Vadacca, Luigi <1983> 07 May 2014 (has links)
The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°<dip<37°) that we hypothesize can fail seismically even if a typical Byerlee friction (0.6-0-75) is assumed. Finally, the results of 3D rupture dynamic models demonstrate that the magnitude expected, after that an event is simulated on the ATF, can decrease if we consider the fault plane roughness.
186

Kinematic models of interseismic deformation from inversion of GPS and InSAR measurements to estimate fault parameters and coupling degree

Anderlini, Letizia <1985> 07 May 2014 (has links)
We have used kinematic models in two Italian regions to reproduce surface interseismic velocities obtained from InSAR and GPS measurements. We have considered a Block modeling, BM, approach to evaluate which fault system is actively accommodating the occurring deformation in both considered areas. We have performed a study for the Umbria-Marche Apennines, obtaining that the tectonic extension observed by GPS measurements is explained by the active contribution of at least two fault systems, one of which is the Alto Tiberina fault, ATF. We have estimated also the interseismic coupling distribution for the ATF using a 3D surface and the result shows an interesting correlation between the microseismicity and the uncoupled fault portions. The second area analyzed concerns the Gargano promontory for which we have used jointly the available InSAR and GPS velocities. Firstly we have attached the two datasets to the same terrestrial reference frame and then using a simple dislocation approach, we have estimated the best fault parameters reproducing the available data, providing a solution corresponding to the Mattinata fault. Subsequently we have considered within a BM analysis both GPS and InSAR datasets in order to evaluate if the Mattinata fault may accommodate the deformation occurring in the central Adriatic due to the relative motion between the North-Adriatic and South-Adriatic plates. We obtain that the deformation occurring in that region should be accommodated by more that one fault system, that is however difficult to detect since the poor coverage of geodetic measurement offshore of the Gargano promontory. Finally we have performed also the estimate of the interseismic coupling distribution for the Mattinata fault, obtaining a shallow coupling pattern. Both of coupling distributions found using the BM approach have been tested by means of resolution checkerboard tests and they demonstrate that the coupling patterns depend on the geodetic data positions.
187

Three dimensional seismic imaging and earthquake locations in a complex, segmented fault region in Southern Apennines (Italy)

Amoroso, Ortensia <1980> 16 March 2012 (has links)
The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.
188

Formulation of an Optimal Search Strategy for Space Debris at GEO

Jackson, Daniel J 01 November 2011 (has links) (PDF)
The purpose of this thesis is to create a search strategy to find orbital debris when the object fails to appear in the sky at its predicted location. This project is for NASA Johnson Space Center Orbital Debris Program Office through the MODEST (Michigan Orbital Debris Survey Telescope) program. This thesis will build upon the research already done by James Biehl in “Formulation of a Search Strategy for Space Debris at GEO.” MODEST tracks objects at a specific right ascension and declination. A circular orbit assumption is then used to predict the location of the object at a later time. Another telescope performs a follow-up to the original observation to provide a more accurate orbit predication. This thesis develops a search strategy when the follow-up is not successful. A general search strategy for finding space debris was developed based on previous observations. A GUI was also generated to find a search strategy in real-time for a specific object based upon previous observations of that object. Search strategies were found by adding a 2% mean random error to the position and velocity vectors. Adding a random error allows for finding the most likely location of space debris when the orbital elements are slightly incorrect. A bivariate kernel density estimator was used to find the probability density function. The probability density function was used to find the most probable location of an object. A correlation between error in the orbital elements and error in right ascension and declination root mean square (RMS) error was investigated. It was found that the orbital elements affect the RMS error nonlinearly, but the relation between orbital element and error depended on the object and no general pattern was found. It was found that how long after the original object was found until the follow-up was attempted did not have a large impact on the probability density function or the search strategy.
189

Tracing bedload transport in Alpine mountain streams by means of PIT-tagged particles: interplay between sediment supply and hydro-meteorological forcing

Toro, Matteo January 2016 (has links)
Conceptual models of first-order controls governing river channel dynamics in mountain streams have been rarely tested in the field. In this Ph.D. thesis we examine the effects of hydro-meteorological forcing and sediment supply on the bedload transport dynamics of mountain streams. To this purpose we select three step-pool mountain streams that share identical granitic lithology, but exhibit contrasting sediment supply and hydro-climatic conditions. The three study sites, which are located in Trentino, Eastern Italian Alps, include the Ussaia Creek (2.3 km2) in Val di Sole, and the Grigno and Tolvà Creeks (7 km2) in Valsugana. The former is characterized by high, sand-rich sediment supply delivered by some 20 m-thick glacigenic deposits. The latter two, which flow through glacially carved bedrock terrain, are disconnected from colluvial sediment inputs so that sediment sources are limited to channel banks and bars during high flows. Mean annual precipitation is respectively 844 mm in Ussaia Creek and 1511 mm in Grigno and Tolvà Creeks. All study streams experience, to variable extents, snowmelt and rainfall-induced bedload transporting flows. To estimate quantitatively the effects and the interactions associated with sediment supply and hydro-meteorological forcing, we monitor precipitation and atmospheric temperature. Hydrological levels at instrumented sections are recorded via pressure transducers. Bedload transport is monitored by tagging and tracking 632 stones (b-axis: 30 to 131 mm; weight 88-4004 g). The tracking of these PIT-tagged tracers was conducted from December 2013 to December 2015 by means of an RFID portable pole antenna. Cumulatively, a total of 16, 11 and 19 bedload events were monitored respectively at Grigno, Tolvà and Ussaia Creek. We measured displacement lengths occurred during inter-survey periods, induced by peak flows associated to snowmelt, rainfall or a combination of the two (mixed-type). Active channel depth was evaluated via direct digging tests at the three study sites finding a median burial depth of 0.1 m at Grigno and Tolvà Creeks, and 0.25 m at Ussaia Creek; recent findings (Schneider et al., 2014), show that ordinary bedload events of boulder-bed streams in the Alps, active layer thickness is comprised within 0.01 and 0.22 m; Houbrechts et al. (2012) demonstrated that in mountain streams the active layer thickness is lower than D50. The active layer width was evaluated via orthophoto maps obtained through Structure-from-Motion. To characterize the streambed roughness and the channel slope we conducted topographic and morphologic surveys. To evaluate event-based bedload sediment volumes we applied the virtual velocity approach (Haschenburger and Church, 1998). In particular, to assess the minimum discharge able to entrain clasts, determining the virtual transport duration of each tracer weight class, we used the competence flow method. In order to evaluate the uncertainty associated with methodology that has been customarily applied in the literature, we performed a sensitivity analysis of the evaluation of bedload transfer proposing three scenarios varying the assumptions that (i) virtual velocities are normally distributed and therefore justifying the adoption of median virtual velocities instead of the average virtual velocity, (ii) that active channel width is constant in time, hence replacing bankfull width with site-specific active widths, evaluated on the base of PIT-tagged particles displacements. The monitoring year 2014 was characterized by a total annual precipitation two times larger than the historical mean, associated to a prolonged snowmelt and to heavy storm front events. By contrast, in 2015 we observed no snowmelt and no precipitation occurred in November and December. At Grigno and Tolvà Creeks, the majority of sediment is transported during autumn storm fronts (median travel distance: 30 m) and secondarily by summer convective storms (median travel distance: 4.5 m). At Ussaia Creek, snowmelt-related events induced 17% of the observed displacement lengths (median travel distance: 2 m), but the primary source of sediment transport is associated chiefly with prolonged storm fronts (median travel distance: 200 m). The mass of tracers does not affect virtual velocities, that are instead affected by seasonal distribution of hydro-meteorological events. In fact, at Grigno and Tolvà Creeks we observe a stratification of velocities according to hydro-meteorological forcing, with the largest values observed during rainfall season, commonly associated to highest values of peak discharge. Variability of virtual velocities at Ussaia Creek does not depend on seasonal hydro-climatic forcing and peak discharge values, with distributions of virtual velocities partly overlapping among snowmelt- and rainfall-related events. The seasonal pattern is translated to bedload transport volumes, with Ussaia Creek transporting by the end of the snowmelt period in 2014, three times more sediment than Grigno Creek. This is testified by a prolonged autumn rainfall that hit simultaneously the study sites, caused a debris-flow that transported 1084 m3 at Ussaia Creek, a much larger quantity compared to the 32.2 m3 evaluated at Grigno and the 62.5 m3 at Tolvà Creek. The definition of rainfall intensity-duration thresholds of precipitation events triggering bedload at our sites shows that transport-limited systems (i.e., Ussaia Creek) result sensitive to precipitation inputs characterized by low rainfall intensity (below 5 mm hr-1) and large duration. Conversely, supply-limited systems (i.e., Grigno and Tolvà Creeks) exhibit armoured beds and interlocked, resilient structures that limit entrainment processes, mobilizing bedload only in response to short-duration/high-intensity rainfall (10 mm hr-1). These channels preserve their morphological structure even under high flow events, triggering sediment transport processes limitedly to peaked storm hydrographs. In the present study we show that the variability in bedload transport among different study reaches is linked to sediment supply conditions and to peculiar hydro-climatic settings. An additional study site characterized by dry conditions, Strimm Creek (Alto Adige, Italy), allows us to obtain a latitudinal transect from dry to wet conditions across the Eastern Italian Alps. By monitoring tracer displacements from 2011 to 2015 at this formerly-glaciated, high-elevation mountain basin, we observe that limited sediment-supply conditions exert a strong control on bedload, chiefly triggered by snowmelt events that account for 73% of the overall travel distances. At Grigno and Tolvà Creeks, also characterized by limited sediment supply, transport is dominated by rainfall events, responsible of driving 95% of the overall travel distances. Sediment availability at Ussaia Creek is responsible for triggering the largest observed bedload events, associated to prolonged autumn precipitation and secondarily to snowmelt events.
190

Generating Player-Traversable Paths for Cyclescape From Real World Data

Trandinh, Thien January 2024 (has links)
Children undergoing Dialysis spend a lot of time on self-care, including three hospital visits a week, three to ve hours in length, accounting for 30% of their after-school time. As a result, many of these children lack the time to lead an active life, and combined with their ailing health, leads to deteriorating quality of life. As a result, many of these children lack con dence in their capabilities and cannot answer questions such as \Can I bike to school?". Cyclescape, an exercise VR game, aims to provide entertainment to patients undergoing dialysis, improve their quality of life, and help them answer such questions. This thesis explores converting real-world data into a personal game level, consisting of a path in a game that players (patients) can traverse on a stationary bike while undergoing dialysis. We will explore the di erent types of real-world map data available and how they are used in video games. We will then derive di erent goals the map should address to improve the player's condition and then design Cyclescape to meet them. Lastly, we will analyze how successful Cyclescape was in meeting these goals. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0511 seconds