• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 75
  • 37
  • 18
  • 14
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De linea geodetica

Gordan, Paul, January 1900 (has links)
Thesis (doctoral)--Schlesische Friedrich-Wilhelms-Universität zu Breslau, 1862. / Vita.
2

De lineis brevissimis in datis superficiebus, imprimis de linea geodaetica

Michaelis, Gustav, January 1837 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität Berlin, 1837. / Vita.
3

Die geodätischen Linien auf Rotationsflächen

Fleischmann, Kurt, January 1915 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Breslau, 1916. / Vita. Includes bibliographical references.
4

Geodesic knots in hyperbolic 3 manifolds /

Kuhlmann, Sally Malinda. January 2005 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Mathematics and Statistics, 2005. / Typescript. Includes bibliographical references (leaves 123-126).
5

Morse-Theorie und geschlossene Geodätische

Rademacher, Hans-Bert. January 1992 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1991. / Includes bibliographical references (p. 106-111).
6

The Riemannian Geometry of Orbit Spaces. The Metric, Geodesics, and

Dmitri Alekseevsky, Andreas Kriegl, Mark Losik, Peter W. Michor, Peter.Michor@esi.ac.at 20 February 2001 (has links)
No description available.
7

Geodesics on Generalized Plane Wave Manifolds

Pena, Moises 01 June 2019 (has links)
A manifold is a Hausdorff topological space that is locally Euclidean. We will define the difference between a Riemannian manifold and a pseudo-Riemannian manifold. We will explore how geodesics behave on pseudo-Riemannian manifolds and what it means for manifolds to be geodesically complete. The Hopf-Rinow theorem states that,“Riemannian manifolds are geodesically complete if and only if it is complete as a metric space,” [Lee97] however, in pseudo-Riemannian geometry, there is no analogous theorem since in general a pseudo-Riemannian metric does not induce a metric space structure on the manifold. Our main focus will be on a family of manifolds referred to as a generalized plane wave manifolds. We will prove that all generalized plane wave manifolds are geodesically complete.
8

Über cassinische Kurven auf der Pseudosphäre

Förster, Otto, January 1911 (has links)
Thesis (doctoral)--Westfälischen Wilhelms-Universität zu Münster, 1911. / Cover title. Vita. Includes bibliographical references.
9

Evolutionary computation of geodesic paths in CAD/CAM /

Xue, Feng, January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 138-147).
10

Geodesics in the complex of curves of a surface

Leasure, Jason Paige 28 August 2008 (has links)
Not available / text

Page generated in 0.0455 seconds