Spelling suggestions: "subject:"geological controls""
1 |
Geologic controls on reservoir quality of the Hunton and Viola limestones in the Leach Field, Jackson County, KansasRennaker, Joshua Jay January 1900 (has links)
Master of Science / Department of Geology / Matthew W. Totten / The area of study for this project is the Leach Field, which is located in Jackson County, Kansas. Production in the Leach Field has historically been disappointing, with 388,787 barrels of oil being produced since the field’s discovery in 1963 (KGS, 2015). Production of the field has been highly variable, with only 20,568 barrels of oil being produced in the last 20 years. Economic and other concerns that have impacted production and production rates of the field include: low oil prices soon after its discovery, numerous changes of ownership, and lack of significant production infrastructure in the area. Stroke of Luck Energy & Exploration, LLC. has recently purchased the majority of the leases and wells in the Leach Field, and is reestablishing the field as a productive oil field. Plans include: washing down several plugged and abandoned wells, and drill new wells to increase production in the field. The goal of this study was to determine the major geologic factors controlling reservoir quality in the Hunton and Viola Limestone Formations in the Leach Field, so that a future exploration model can be developed to help increase and stabilize the field's overall production. This model was created by applying several testing methods including: well logging analysis, microscope analysis, and subsurface mapping. Based on these results it was determined that the quality of the reservoir rocks is controlled by the degree of dolomitizaiton in both formations. Reservoir quality is as important as structure in determining well productivity in the Leach Field.
|
2 |
Antecedent Geologic Controls on the Distribution of Oyster Reefs in Copano Bay, TexasPiper, Erin Alynn 2010 May 1900 (has links)
Copano Bay is a shallow (< 2-3 m), microtidal estuary in south central Texas. In an effort to both determine the distribution as well as investigate the controls on the distribution of oyster reefs, a geophysical survey of Copano Bay was conducted in June and July 2007. Surficial sediment analysis confirms that the recent sedimentation in Copano Bay is comprised of mostly estuarine mud with little sand or shell, large extents of oyster reefs and smaller areas of sand. Seismic stratigraphy analyses verify that the first oyster reefs in Copano Bay formed atop topographic highs in the Pleistocene surface. About 6 ka, sea level rise slowed to near its present rate and sediment supply decreased tremendously to Copano Bay decreasing the amount of suspended sediment. The first oyster reefs began forming around this time using these fluvial terraces as suitable substrate. Once the initial reefs were established, additional reefs began forming atop these initial reefs, or on the eroded shell hash material from the initial reefs. During this time of slow sea level rise and low sediment input to the bay, oyster reefs thrived and reef and shell hash material covered a majority of the bay surface. Once climate change increased sediment input to the bay, the reefs began to decrease in size due to siltation. The reefs have continued to decrease in size causing a 64 percent reduction in oyster reef and shell hash area from approximately 4.8 ka to today.
|
Page generated in 0.4936 seconds