1 |
Análise geoestatística multi-pontos / Analysis of multiple-point geostatisticsCruz Rodriguez, Joan Neylo da 12 June 2013 (has links)
Estimativa e simulação baseados na estatística de dois pontos têm sido usadas desde a década de 1960 na análise geoestatístico. Esses métodos dependem do modelo de correlação espacial derivado da bem conhecida função semivariograma. Entretanto, a função semivariograma não pode descrever a heterogeneidade geológica encontrada em depósitos minerais e reservatórios de petróleo. Assim, ao invés de usar a estatística de dois pontos, a geoestatística multi-pontos, baseada em distribuições de probabilidade de múltiplo pontos, tem sido considerada uma alternativa confiável para descrição da heterogeneidade geológica. Nessa tese, o algoritmo multi-ponto é revisado e uma nova solução é proposta. Essa solução é muito melhor que a original, pois evita usar as probabilidades marginais quando um evento que nunca ocorre é encontrado no template. Além disso, para cada realização a zona de incerteza é ressaltada. Uma base de dados sintética foi gerada e usada como imagem de treinamento. A partir dessa base de dados completa, uma amostra com 25 pontos foi extraída. Os resultados mostram que a aproximação proposta proporciona realizações mais confiáveis com zonas de incerteza menores. / Estimation and simulation based on two-point statistics have been used since 1960\'s in geostatistical analysis. These methods depend on the spatial correlation model derived from the well known semivariogram function. However, the semivariogram function cannot describe the geological heterogeneity found in mineral deposits and oil reservoirs. Thus, instead of using two-point statistics, multiple-point geostatistics based on probability distributions of multiple-points has been considered as a reliable alternative for describing the geological heterogeneity. In this thesis, the multiple-point algorithm is revisited and a new solution is proposed. This solution is much better than the former one because it avoids using marginal probabilities when a never occurring event is found in a template. Moreover, for each realization the uncertainty zone is highlighted. A synthetic data base was generated and used as training image. From this exhaustive data set, a sample with 25 points was drawn. Results show that the proposed approach provides more reliable realizations with smaller uncertainty zones.
|
2 |
Análise geoestatística multi-pontos / Analysis of multiple-point geostatisticsJoan Neylo da Cruz Rodriguez 12 June 2013 (has links)
Estimativa e simulação baseados na estatística de dois pontos têm sido usadas desde a década de 1960 na análise geoestatístico. Esses métodos dependem do modelo de correlação espacial derivado da bem conhecida função semivariograma. Entretanto, a função semivariograma não pode descrever a heterogeneidade geológica encontrada em depósitos minerais e reservatórios de petróleo. Assim, ao invés de usar a estatística de dois pontos, a geoestatística multi-pontos, baseada em distribuições de probabilidade de múltiplo pontos, tem sido considerada uma alternativa confiável para descrição da heterogeneidade geológica. Nessa tese, o algoritmo multi-ponto é revisado e uma nova solução é proposta. Essa solução é muito melhor que a original, pois evita usar as probabilidades marginais quando um evento que nunca ocorre é encontrado no template. Além disso, para cada realização a zona de incerteza é ressaltada. Uma base de dados sintética foi gerada e usada como imagem de treinamento. A partir dessa base de dados completa, uma amostra com 25 pontos foi extraída. Os resultados mostram que a aproximação proposta proporciona realizações mais confiáveis com zonas de incerteza menores. / Estimation and simulation based on two-point statistics have been used since 1960\'s in geostatistical analysis. These methods depend on the spatial correlation model derived from the well known semivariogram function. However, the semivariogram function cannot describe the geological heterogeneity found in mineral deposits and oil reservoirs. Thus, instead of using two-point statistics, multiple-point geostatistics based on probability distributions of multiple-points has been considered as a reliable alternative for describing the geological heterogeneity. In this thesis, the multiple-point algorithm is revisited and a new solution is proposed. This solution is much better than the former one because it avoids using marginal probabilities when a never occurring event is found in a template. Moreover, for each realization the uncertainty zone is highlighted. A synthetic data base was generated and used as training image. From this exhaustive data set, a sample with 25 points was drawn. Results show that the proposed approach provides more reliable realizations with smaller uncertainty zones.
|
Page generated in 0.0619 seconds