• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 675
  • 519
  • 143
  • 105
  • 97
  • 15
  • 12
  • 11
  • 11
  • 11
  • 10
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 1888
  • 232
  • 231
  • 204
  • 187
  • 187
  • 181
  • 162
  • 141
  • 116
  • 115
  • 111
  • 110
  • 107
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High Energy Proton Telescope

Sadiq, Fauzia Unknown Date
No description available.
32

From commutators to half-forms : quantisation

Roberts, Gina January 1987 (has links)
No description available.
33

QoS analysis of traffic between an ISP and future home area network

Ng, Eugene 08 January 2007 (has links)
Today's home network usually involves connecting multiple PCs and peripheral devices, such as printers and scanners, together in a network. This provides the benefit of allowing the PCs in the network to share Internet access and other resources. However, it is expected in the future, the home area network (HAN) will grow and extend to other home devices such as home entertainment systems (including digital TV, hi-fi stereo, etc.), appliances, webcam, security alarm system, etc. Connecting other home devices to a HAN provides users with many benefits not available in today's home networks. For example, home devices capable of connecting to the future HAN are able to share the content downloaded from broadband access anywhere in the home. Users can also have remote access and control of their home devices. To extend the home area network to all these different home devices, however, means that the traffic between the ISP and future HAN will be very different from the traffic generated by today’s home network. In today's home network, which consists mainly of multiple PCs, a best-effort approach is able to satisfy the need, since most of the traffic generated by PCs is not real-time in nature. However, in future HANs, it is anticipated that traffic generated from home devices requiring real-time applications such as multimedia entertainment systems, teleconferencing, etc. will occupy a large proportion of the traffic between the ISP and future HANs. In addition, given the variety of home devices that could potentially be added to future HANs, the amount and variety of traffic between the ISP and a future HAN will certainly be very different from today's home network that is dominated by Internet/data traffic. To allow HAN users of these real-time applications and various types of home devices to continue enjoying seamless experiences in using their home devices without noticing significant delays or unnecessary interruptions, it is important for the ISP to be able to effectively manage the channel to the home so that it can provide sufficient bandwidth to ensure high QoS for home applications. The aim of this thesis is to understand the types of traffic that will be expected and to develop an analytical model that will represent the traffic behaviour between the ISP and future HANs to understand how to manage the channel to provide high QoS. In this thesis, we use the continuous-time PH/M/n/m preemptive priority queue to model the traffic behaviour between the ISP and a future HAN. Three classes of traffic are defined in this model: real-time, interactive, and unclassified. Each of these three traffic classes receives a unique priority level. From the model one can approximate the amount of bandwidth required to be allocated for each traffic class for each household so that the total bandwidth required is minimized while the QoS requirements (delay and blocking probability) of the traffic generated by the home devices are met. Thus this model could potentially be used as a network planning tool for ISPs to estimate how much bandwidth they need to provide per household for homes that use home area network. Alternatively, it could also be used to estimate what quality of service (e.g. what is the mean delay and blocking probability expected) given a certain amount of bandwidth per household.
34

QoS analysis of traffic between an ISP and future home area network

Ng, Eugene 08 January 2007 (has links)
Today's home network usually involves connecting multiple PCs and peripheral devices, such as printers and scanners, together in a network. This provides the benefit of allowing the PCs in the network to share Internet access and other resources. However, it is expected in the future, the home area network (HAN) will grow and extend to other home devices such as home entertainment systems (including digital TV, hi-fi stereo, etc.), appliances, webcam, security alarm system, etc. Connecting other home devices to a HAN provides users with many benefits not available in today's home networks. For example, home devices capable of connecting to the future HAN are able to share the content downloaded from broadband access anywhere in the home. Users can also have remote access and control of their home devices. To extend the home area network to all these different home devices, however, means that the traffic between the ISP and future HAN will be very different from the traffic generated by today’s home network. In today's home network, which consists mainly of multiple PCs, a best-effort approach is able to satisfy the need, since most of the traffic generated by PCs is not real-time in nature. However, in future HANs, it is anticipated that traffic generated from home devices requiring real-time applications such as multimedia entertainment systems, teleconferencing, etc. will occupy a large proportion of the traffic between the ISP and future HANs. In addition, given the variety of home devices that could potentially be added to future HANs, the amount and variety of traffic between the ISP and a future HAN will certainly be very different from today's home network that is dominated by Internet/data traffic. To allow HAN users of these real-time applications and various types of home devices to continue enjoying seamless experiences in using their home devices without noticing significant delays or unnecessary interruptions, it is important for the ISP to be able to effectively manage the channel to the home so that it can provide sufficient bandwidth to ensure high QoS for home applications. The aim of this thesis is to understand the types of traffic that will be expected and to develop an analytical model that will represent the traffic behaviour between the ISP and future HANs to understand how to manage the channel to provide high QoS. In this thesis, we use the continuous-time PH/M/n/m preemptive priority queue to model the traffic behaviour between the ISP and a future HAN. Three classes of traffic are defined in this model: real-time, interactive, and unclassified. Each of these three traffic classes receives a unique priority level. From the model one can approximate the amount of bandwidth required to be allocated for each traffic class for each household so that the total bandwidth required is minimized while the QoS requirements (delay and blocking probability) of the traffic generated by the home devices are met. Thus this model could potentially be used as a network planning tool for ISPs to estimate how much bandwidth they need to provide per household for homes that use home area network. Alternatively, it could also be used to estimate what quality of service (e.g. what is the mean delay and blocking probability expected) given a certain amount of bandwidth per household.
35

Local indicability and relative presentations of groups

Fredericks, Julia D. 04 May 2000 (has links)
Graduation date: 2000
36

Restricted measurements for the X-ray transform /

Courdurier, Matias. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 47-51).
37

Geometric-programming solution of optimal control problems

Djanali, Supeno. January 1978 (has links)
Thesis (M.S.)--Wisconsin. / Includes bibliographical references (leaves 107-121).
38

Local indicability and relative presentations of groups /

Fredericks, Julia D. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2000. / Typescript (photocopy). Includes bibliographical references (leaves 62-63). Also available on the World Wide Web.
39

Geometric programming and decomposition techniques in optimal control

Djanali, Supeno. January 1984 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1984. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 215-244).
40

New Extensions and Applications of Geršgorin Theory

Marsli, Rachid 11 August 2015 (has links)
In this work we discover for the first time a strong relationship between Geršgorin theory and the geometric multiplicities of eigenvalues. In fact, if λ is an eigenvalue of an n × n matrix A with geometric multiplicity k, then λ is in at least k Geršgorin discs of A. Moreover, construct the matrix C by replacing, in every row, the (k − 1) smallest off-diagonal entries in absolute value by 0, then λ is in at least k Geršgorin discs of C. We also state and prove many new applications and consequences of these results as well as we update an improve some important existing ones.

Page generated in 0.0485 seconds