• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Zoophilic Dermatophytes Using MALDI-TOF Mass Spectrometry

Baumbach, Christina-Marie, Müller, Stefanie, Reuschel, Maximilian, Uhrlaß, Silke, Nenoff, Pietro, Baums, Christoph Georg, Schrödl, Wieland 03 April 2023 (has links)
Dermatophytoses represent a major health burden in animals and man. Zoophilic dermatophytes usually show a high specificity to their original animal host but a zoonotic transmission is increasingly recorded. In humans, these infections elicit highly inflammatory skin lesions requiring prolonged therapy even in the immunocompetent patient. The correct identification of the causative agent is often crucial to initiate a targeted and effective therapy. To that end, matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents a promising tool. The objective of this study was to evaluate the reliability of species identification of zoophilic dermatophytes using MALDI-TOF MS. The investigation of isolates from veterinary clinical samples suspicious of dermatophytoses suggests a good MALDI-TOF MS based identification of the most common zoophilic dermatophyte Microsporum canis. Trichophyton (T.) spp. usually achieved scores only around the cutoff value for secure species identification because of a small number of reference spectra. Moreover, these results need to be interpreted with caution due to the close taxonomic relationship of dermatophytes being reflected in very similar spectra. In our study, the analysis of 50 clinical samples of hedgehogs revealed no correct identification using the provided databases, nor for zoophilic neither for geophilic causative agents. After DNA sequencing, adaptation of sample processing and an individual extension of the inhouse database, acceptable identification scores were achieved (T. erinacei and Arthroderma spp., respectively). A score-oriented distance dendrogram revealed clustering of geophilic isolates of four different species of the genus Arthroderma and underlined the close relationship of the important zoophilic agents T. erinacei, T. verrucosum and T. benhamiae by forming a subclade within a larger cluster including different dermatophytes. Taken together, MALDI-TOF MS proofed suitable for the identification of zoophilic dermatophytes provided fresh cultures are used and the reference library was previously extended with spectra of laboratory-relevant species. Performing independent molecular methods, such as sequencing, is strongly recommended to substantiate the findings from morphologic and MALDI-TOF MS analyses, especially for uncommon causative agents.
2

Dermatofyty izolované ze srsti volně žijících hlodavců / Dermatophytes isolated from the hair of free-living rodents

Žárová, Štěpánka January 2020 (has links)
Dermatophytes (order Onygenales, Ascomycota) are microscopic filamentous keratinophilic fungi that can cause skin infections known as dermatophytosis. The most diverse but not very studied genus Arthroderma has been revised recently (Míková 2018) which was essential for further research. This genus comprises mostly species with a supposed reservoir in soil. Lack of information about their ecology and frequent isolation of some species from the hair of free- living mammals (mainly rodents) may testify a strong host association. Rodents could thus represent the hidden reservoir of this species. For this thesis, I have chosen three ecologically distinct rodent species: Mus musculus, Apodemus flavicollis, and Clethrionomys glareolus. I obtained the material by brushing the hair of asymptomatic individuals and used this material for cultivation on selective medium. I identified the isolates of dermatophytes (n = 30) using molecular methods. I used sequences of three highly variable loci (ITS, tubb a tef1α) to incorporate these isolates in the phylogenetic analysis based on the monography of the genus Arthroderma (Míková 2018). I characterized the phenotype of selected strains based on morphological and physiological data including the ability to utilize keratin and the production of siderophores. The...
3

Ověření druhových hranic mezi klinicky významnými geofilními druhy Arthroderma / Verification of species boundaries in clinically relevant Arthroderma species

Míková, Ivana January 2018 (has links)
The genus Arthroderma contains predominantly geophilic dermatophytes (naturally occuring in soil). Some species, especially those from Trichophyton terrestre complex, cause human and animal dermatomycosis. In the past, the species boundaries were determined mainly on the basis of biological species concept using in vitro mating experiments. But these nearly 70-years-old findings have not been tested by means of modern taxonomic methods. In total 194 species of the genus Arthroderma (including all available ex-type strains) originating predominantly in USA, Canada and Europe were studied in this thesis. They were mostly isolated from soil (n = 77), animals (n = 50), human clinical material (n = 41) and cave sediment (n = 9). The main goal of the thesis was to elucidate the species boundaries between species A. insingulare, A. lenticulare and A. quadrifidum, that were classified into the T. terrestre complex because of their seemingly identical asexual stage. Further, this work aimed to resolve the relationship between Arthroderma species using the multigene phylogeny and clarify which species are clinically relevant. A multigene phylogeny of the genus Arthroderma was based on the sequences of the ITS rDNA region, β-tubulin (TUB2) and translation elongation factor 1α (TEF1α) genes. The genus...

Page generated in 0.0451 seconds