• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 44
  • 14
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Forward modelling and inversion of streaming potential for the interpretation of hydraulic conditions from self-potential data

Sheffer, Megan Rae 05 1900 (has links)
The self-potential method responds to the electrokinetic phenomenon of streaming potential and has been applied in hydrogeologic and engineering investigations to aid in the evaluation of subsurface hydraulic conditions. Of specific interest is the application of the method to embankment dam seepage monitoring and detection. This demands a quantitative interpretation of seepage conditions from the geophysical data. To enable the study of variably saturated flow problems of complicated geometry, a three-dimensional finite volume algorithm is developed to evaluate the self-potential distribution resulting from subsurface fluid flow. The algorithm explicitly calculates the distribution of streaming current sources and solves for the self-potential given a model of hydraulic head and prescribed distributions of the streaming current cross-coupling conductivity and electrical resistivity. A new laboratory apparatus is developed to measure the streaming potential coupling coefficient and resistivity in unconsolidated soil samples. Measuring both of these parameters on the same sample under the same conditions enables us to properly characterize the streaming current cross-coupling conductivity coefficient. I present the results of a laboratory investigation to study the influence of soil and fluid parameters on the cross-coupling coefficient, and characterize this property for representative well-graded embankment soils. The streaming potential signals associated with preferential seepage through the core of a synthetic embankment dam model are studied using the forward modelling algorithm and measured electrical properties to assess the sensitivity of the self-potential method in detecting internal erosion. Maximum self-potential anomalies are shown to be linked to large localized hydraulic gradients that develop in response to piping, prior to any detectable increase in seepage flow through the dam. A linear inversion algorithm is developed to evaluate the three-dimensional distribution of hydraulic head from self-potential data, given a known distribution of the cross-coupling coefficient and electrical resistivity. The inverse problem is solved by minimizing an objective function, which consists of a data misfit that accounts for measurement error and a model objective function that incorporates a priori information. The algorithm is suitable for saturated flow problems or where the position of the phreatic surface is known.
32

Forward modelling and inversion of streaming potential for the interpretation of hydraulic conditions from self-potential data

Sheffer, Megan Rae 05 1900 (has links)
The self-potential method responds to the electrokinetic phenomenon of streaming potential and has been applied in hydrogeologic and engineering investigations to aid in the evaluation of subsurface hydraulic conditions. Of specific interest is the application of the method to embankment dam seepage monitoring and detection. This demands a quantitative interpretation of seepage conditions from the geophysical data. To enable the study of variably saturated flow problems of complicated geometry, a three-dimensional finite volume algorithm is developed to evaluate the self-potential distribution resulting from subsurface fluid flow. The algorithm explicitly calculates the distribution of streaming current sources and solves for the self-potential given a model of hydraulic head and prescribed distributions of the streaming current cross-coupling conductivity and electrical resistivity. A new laboratory apparatus is developed to measure the streaming potential coupling coefficient and resistivity in unconsolidated soil samples. Measuring both of these parameters on the same sample under the same conditions enables us to properly characterize the streaming current cross-coupling conductivity coefficient. I present the results of a laboratory investigation to study the influence of soil and fluid parameters on the cross-coupling coefficient, and characterize this property for representative well-graded embankment soils. The streaming potential signals associated with preferential seepage through the core of a synthetic embankment dam model are studied using the forward modelling algorithm and measured electrical properties to assess the sensitivity of the self-potential method in detecting internal erosion. Maximum self-potential anomalies are shown to be linked to large localized hydraulic gradients that develop in response to piping, prior to any detectable increase in seepage flow through the dam. A linear inversion algorithm is developed to evaluate the three-dimensional distribution of hydraulic head from self-potential data, given a known distribution of the cross-coupling coefficient and electrical resistivity. The inverse problem is solved by minimizing an objective function, which consists of a data misfit that accounts for measurement error and a model objective function that incorporates a priori information. The algorithm is suitable for saturated flow problems or where the position of the phreatic surface is known.
33

The development of two-dimensional digital operators for the filtering of potential field data.

Parsneau, Harold Paul. January 1970 (has links)
No description available.
34

Forward modelling and inversion of streaming potential for the interpretation of hydraulic conditions from self-potential data

Sheffer, Megan Rae 05 1900 (has links)
The self-potential method responds to the electrokinetic phenomenon of streaming potential and has been applied in hydrogeologic and engineering investigations to aid in the evaluation of subsurface hydraulic conditions. Of specific interest is the application of the method to embankment dam seepage monitoring and detection. This demands a quantitative interpretation of seepage conditions from the geophysical data. To enable the study of variably saturated flow problems of complicated geometry, a three-dimensional finite volume algorithm is developed to evaluate the self-potential distribution resulting from subsurface fluid flow. The algorithm explicitly calculates the distribution of streaming current sources and solves for the self-potential given a model of hydraulic head and prescribed distributions of the streaming current cross-coupling conductivity and electrical resistivity. A new laboratory apparatus is developed to measure the streaming potential coupling coefficient and resistivity in unconsolidated soil samples. Measuring both of these parameters on the same sample under the same conditions enables us to properly characterize the streaming current cross-coupling conductivity coefficient. I present the results of a laboratory investigation to study the influence of soil and fluid parameters on the cross-coupling coefficient, and characterize this property for representative well-graded embankment soils. The streaming potential signals associated with preferential seepage through the core of a synthetic embankment dam model are studied using the forward modelling algorithm and measured electrical properties to assess the sensitivity of the self-potential method in detecting internal erosion. Maximum self-potential anomalies are shown to be linked to large localized hydraulic gradients that develop in response to piping, prior to any detectable increase in seepage flow through the dam. A linear inversion algorithm is developed to evaluate the three-dimensional distribution of hydraulic head from self-potential data, given a known distribution of the cross-coupling coefficient and electrical resistivity. The inverse problem is solved by minimizing an objective function, which consists of a data misfit that accounts for measurement error and a model objective function that incorporates a priori information. The algorithm is suitable for saturated flow problems or where the position of the phreatic surface is known. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
35

An analysis of gravity surveys in the Portland Basin, Oregon

Perttu, Janice C. 01 January 1980 (has links)
The geologic setting of the Portland Basin is ideal for gravity surveys because of the large density contrasts between geologic units. The Portland Basin consists of a north-northwest-trending syncline in the Columbia River basalt overlain by Pliocene to Recent alluvium. This study was undertaken to define structures in the Portland Basin which are obscured by the alluvium. An areal gravity survey of the Portland Basin covering approximately 450 square kilometers was conducted for this study.
36

The development of two-dimensional digital operators for the filtering of potential field data.

Parsneau, Harold Paul. January 1970 (has links)
No description available.
37

A porous elastic model for acoustic scatter from manganese nodules

Riggins, David January 1982 (has links)
Including porosity introduces absorption into the previously developed scattering analysis for elastic spheres. Acoustic propagation in porous media has two distinct compressional modes, one in which the fluid and the structure move in phase with each other and the other in which they move in opposite phase. Expressions for the complex wavenumbers of both waves are derived, using the parameters for manganese nodules. A modal analysis with a pressure boundary condition indicates that the first kind of compressional wave is lightly attenuated and carries most of the energy of the coupled system. The second compressional wave is highly attenuated and effectively loses all of its energy in the first centimeter of the nodule. This second wave is very important for consideration of nodule-scale dimensions since it represents the dominant loss mechanism. A method was developed to form a single effective compressional wave attenuation for both compressional waves by employing a pressure and velocity boundary condition at the surface of the nodule and using a spatially integrated intensity match. An effective wave attenuation is generated for the compressional wave in the non-porous elastic model which accounts for porous attenuation and which is based on a parameter defined as travel distance L. If L is assumed to be proportional to nodule radius, the attenuation is approximated as constant for the frequency range of interest and is independent of nodule radius. An effective attenuation is predicted. The shear attenuation is found to exhibit a frequency squared form dependence for manganese nodules. However, shear attenuation is very small for ideal nodules and is negligible compared to the compressional loss. The elastic model of the nodule was numerically altered to accommodate complex wavenumbers in shear and compression. Four distinct regions of attenuation are observed in individual reflectivity, R<sub>θ</sub>, versus ka plots and discussed. The importance of including attenuation is readily apparent from observing the transformation of the elastic non-porous results. Scattering experiments were performed on manganese nodules and experimental individual reflectivity versus ka plots were generated. Good agreement is found for the spherical Atlantic nodules using values in the third region of attenuation. From these experiments, an estimation of attenuation is made and compared with the theoretical prediction. The influence of attenuation on individual scattering and multiple scattering is investigated. Attenuation tends to shift the major bottom reflectivity, C<sub>R</sub>, peak toward lower ka values. This affects the prediction of the acoustic response of manganese nodule deposits. / Master of Science
38

Long-period background earth noise as measured in shallow, hand excavated holes

Dalton, David C. 22 June 2010 (has links)
To facilitate its objective of high-resolution imaging of the Earth's crust and upper mantle, The Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) has initiated studies into developing instrumentation capable of achieving that goal. The requirements include portable sensors capable of resolving seismic signals to 100 second periods. To test the feasibility of obtaining useful long-period seismic data from a portable array, prototype instruments were installed in hand excavated shallow holes (postholes) at several sites in various geologic settings across the continental United States. Three of the sites were near established seismic vaults and comparisons between posthole installation and vault installation were made. Results from this study indicate that posthole installation of long-period sensors may indeed be feasible: eight out of the 12 sites occupied had long-period background noise levels low enough to resolve 100-second surface waves generated from a magnitude 5.0 earthquake 30 degrees distant from the recording station. At periods less than 10 seconds, background noise recorded from postholes was no more than 3 dB. higher than that recorded in vaults. At 100 seconds, vertical noise was 11 to 16 dB. higher than that recorded in vaults and horizontal noise was 4 to 22 dB. higher. Across all posthole installations, as compared to Peterson’s Low Noise Model, vertical and horizontal noise at 100 seconds averaged 27 and 45 dB. higher, respectively. Sites should be located directly on bedrock, where possible. If this is not possible, they should be in well compacted inorganic soil with a low moisture content. Immediately after installation at a potential site, a noise sample should be analyzed in the field to test the suitability of the site. / Master of Science
39

ELECTROMAGNETIC AND INDUCED POLARIZATION RESPONSE OF WELL CASINGS.

Williams, Jeffery Thomas, 1959- January 1984 (has links)
No description available.
40

Geophysical investigation into the geology, geometry and geochronology of the South African Pilanesberg Complex and the Pilanesberg dyke system

Lee, Sally-Anne January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2016 / The Mesoproterozoic Pilanesberg Complex, South Africa, is the world’s largest alkaline intrusive complex. Mapped geological field relationships suggest the Complex has circular inward dipping layers. However, it is unclear how the dipping layers extend at depth. As a result, the 3D geometry of the Pilanesberg Complex is unknown. Modelling of the Pilanesberg Complex uses 2D forward models as well as 3D forward and inversion, gravity and magnetic data models, to set limits on the 3D geometry of the Pilanesberg Complex. The 2D Bouguer gravity models and geology maps indicate that some of the Bushveld Complex Main Zone shifted to the west of the Pilanesberg Complex during emplacement. This, and a highly faulted country rock, accounts for a portion of how the host rock was able to accommodate the Pilanesberg Complex intrusion. The geometry of the Complex is explored with test gravity models where the model of outward dipping and vertically dipping cylinders are unable to match the Bouguer gravity signal over the Complex, but the inward dipping model matched the data to provide a possible solution for the geometry of the Complex. The Pilanesberg Complex geometry is modelled with 3D magnetic inversion, 3D forward gravity models and 2.5D gravity test profiles that were all constrained by the surface geology. The different models correlate so that best data fit for the Complex is represented by an overall inward dipping structure. Surface geological measurements indicate that the northern edge of the Complex dip out to the north. The 3D forward modelling was able to produce a positive solution that matched the gravity data with a northward dipping northern edge. The dipping northern edge is also observed on the University of British Columbia, UBC, 3D gravity inversion and the Euler deconvolution gravity profile solutions. The depth of the Pilanesberg Complex from 3D forward gravity modelling is estimated to be between 5 and 6 km. The Complex is suggested to have undergone block movement where the northern block and southern block are separated by the 30 km long Vlakfontein fault, which bisects the Complex from the north-east to the south-west. The image processing contact depth, Euler deconvolution solutions and the 3D Voxi inversion model suggest that the fresh bedrock is closer to surface in the north, while the southern block appears to be approximately 1km deeper than the northern block. The northern dip and block movement are explained by complicated structural events that include trap door graben settling which hinged on the northern edge as well as faulting and external block movement during a regional lateral extensional event. The Pilanesberg Complex intruded during a larger system of alkaline intrusions, known as the Pilanesberg Alkaline Province. The intrusions are associated with the Province due to their ages and chemical affinity. This Province includes two dyke swarms that radiate to the north-west and south of the Pilanesberg Complex, as well as smaller circular clinopyroxenite intrusions throughout the Bushveld Complex. The Pilanesberg dyke system and the circular clinopyroxenite intrusions are reversely magnetised with IGRF corrected values ranging between -150 to -320 nT compared to the normally magnetised 166 to 330 nT values of the Pilanesberg Complex. This suggests that a magnetic reversal occurred between the emplacement of the Pilanesberg Complex and the dyke System. The age data of the Complex and dyke Swarm suggest a magnetic reversal could have occurred between the emplacement of the Pilanesberg Complex and the Pilanesberg dyke System. The Complex is dated at 1602 ± 38 Ma and 1583 ± 10 Ma, from two white foyaite samples from the southern edge (using 40Ar/39Ar amphibole spectrum analysis). These ages are vastly different from previously reported ages, which ranged between 1200 Ma and 1450 Ma (Harmer R., 1992; Hansen et al., 2006). The error analysis has improved considerably from the published dates making the proposed dates plausible for the intrusion of the Pilanesberg Complex as the first and main intrusion of the Pilanesberg Alkaline Province. The Pilanesberg dyke System intruded much later between 1219 ± 6 Ma to 1268 ± 10 Ma for the red syenite dyke samples (using 40Ar/39Ar on feldspars spectrum analysis) and 1139 ± 18 Ma obtained for the grey syenite dyke (using 40Ar/39Ar on amphiboles inverse isochronal analysis). The dyke Swarm dates are significantly younger than the previously published ages for the dykes, which were between 1290 Ma and 1330 Ma (Van Niekerk, 1962; Emerman, 1991). / LG2017

Page generated in 0.0892 seconds