• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpretation of Vibroseis reflections from within the Catoctin Formation of central Virginia

Brennan, Jeanne L. January 1985 (has links)
Large amplitude seismic reflections from within the Catoctin Formation of central Virginia are interpreted to originate from acoustically thin beds of interlayered metabasalts and metasediments. Large acoustic impedance contrasts exist between epidotised layers ( epidosites and volcanic breccia) and non-epidotised layers (greenstones and phyllites) within the Catoctin Formation. Acoustic impedance contrasts also exist between greenstones (metabasalts) and phyllites (metasediments). Constructive interference of small amplitude reflections from thin beds result in large amplitude, reverberating reflections. Thin bed reflections that approximate the first derivative of the source wavelet constructively interfere to give even larger amplitude reflections than those originating by conventional tuning. Computer modeling based on two geologic sections of thin beds of epidosites interlayered with greenstones and of greenstones interlayered with phyllites and epidosites indicates that large amplitude reflections result from constructive interference of thin bed reflections. / Master of Science
2

A geophysical study of the earth's crust in central Virginia with implications for lower crustal reflections and Appalachian crustal structure

Pratt, Thomas L. January 1986 (has links)
Reprocessing of the United States Geological Survey's seismic reflection profile along Interstate 64 (I64) across Virginia with a data extension to 14-sec two-way travel time has provided a stacked section suitable for an integrated interpretation of refraction, earthquake, and blast analyses done by previous workers as well as gravity modelling done in this study. The seismic reflection profile shows a highly reflective upper crust which is consistent with an allochthonous Blue Ridge Province, possibly with underlying thrust sheets, and a basal decollement at about 9 km (3 sec) depth. Immediately east of the Blue Ridge province, the Appalachian structures plunge to up to 12 km (4 sec) depth where their interpretation on the section becomes ambiguous. The Evington Group, Hardware Terrane, and Chopawamsic metavolcanic rocks exposed in the Piedmont Province correspond to numerous reflections which appear to overlie a shallowly (10° to 15°) west-dipping, highly reflective zone dipping from 1.5 sec beneath the Goochland Terrane to 5 sec beneath the Evington Group rocks. Some of the overlying reflections apparently root in this zone which is therefore interpreted to include decollement surfaces along which the overlying rocks were transported. Grenville basement rocks are interpreted to underlie this zone and form autochthonous basement beneath the entire western portion of the profile because relatively few reflections originate from within this region. The Goochland granulite terrane is interpreted as a nappe structure which has overridden a portion of the Chopawamsic metavolcanic rocks. The Goochland terrane is bounded on the east' on the section by a broad zone of east-dipping (20° to 45°) reflections which may penetrate to Moho depths and are possibly correlative with similar events seen on other Appalachian lines. The 164 section contains a layered sequence of reflections at about 9 to 12 sec extending about 70 km west from Richmond, Virginia whose base coincides almost exactly with the Mohorovicic Discontinuity (Moho) interpreted from earlier refraction work. The deep reflections are thus believed to be lower crustal layering forming a 5 to 10 km thick Moho transition zone which is believed to persist across the state. The density contrast of 0.25 gm/cm³ between the lower crust and upper mantle derived from gravity modelling, the seismic transition zone, and the presence of intrusive rocks of lower crust-upper mantle origin at the surface are consistent with partial melting and contamination of the lower crust with upper mantle material. The refraction data and gravity modelling are consistent with a crust which thins from about 52 km beneath the Appalachian mountains to about 35 km beneath Richmond, Virginia, and rethickens by up to 10 km beneath the zone of east-dipping events east of Richmond. The pervasiveness of the zone of east-dipping events on other seismic reflection lines and the continuity of the adjacent Piedmont gravity high suggest that a similar crustal profile occurs along the length of the Appalachians. / Ph. D.

Page generated in 0.0695 seconds