Spelling suggestions: "subject:"germanium nanocrystals"" "subject:"germanium nanocrystalline""
1 |
Formation of Nanocrystalline Germanium via Oxidation of Si₀.₅₄Ge₀.₄₆ for Memory Device ApplicationsKan, Eric Win Hong, Leoy, C.C., Choi, Wee Kiong, Chim, Wai Kin, Antoniadis, Dimitri A., Fitzgerald, Eugene A. 01 1900 (has links)
In this work, we studied the possibility of synthesizing nanocrystalline germanium (Ge) via dry and wet oxidation of both amorphous and polycrystalline Si₀.₅₄Ge₀.₄₆ films. In dry oxidation, Ge was rejected from the growing SiO₂ forming a Ge-rich polycrystalline layer. As for wet oxidation, Ge was incorporated into the oxide, forming a layer of mixed oxide, SixGe₁âxOy. Formation of nanocrystalline Ge was observed when the layer of SixGe₁âxOy was annealed in a N₂ ambient. We have fabricated a metal-insulator-semiconductor structure with nanocrystalline Ge embedded within the insulator layer to study its feasibility as a memory device. / Singapore-MIT Alliance (SMA)
|
2 |
Synthesizing Germanium And Silicon Nanocrystals Embedded In Silicon Dioxide By Magnetron Sputtering TechniqueAlagoz, Arif Sinan 01 August 2007 (has links) (PDF)
Applications of semiconductor nanocrystal in electronics are promising. Various techniques were developed to synthesize and analyze semiconductor nanocrystals for integrated circuit applications. In this study, silicon and germanium nanocrystals were synthesized in silicon dioxide matrix by magnetron sputtering deposition and following high temperature furnace annealing. Multilayer and single layer samples were prepared by co-sputtering depositions. Transmission electron microscopy measurements were carried out to analyze annealing effects on nanocrystal size distribution, change in shape, density and localization in silicon dioxide (SiO2). Ge-Ge Traverse Optical (TO) peak was monitored using Raman spectroscopy to investigate germanium nanocrystal formation and stress effects of silicon dioxide. Si-O-Si asymmetric stretching band is examined by Fourier transform infrared transmission spectroscopy to study silicon dioxide matrix recovery with germanium nanocrystal formation. Luminescence characteristics of silicon nanocrystals in visible and near infrared region (550nm-1050nm) with changing nanocrystal size and density were studied with photoluminescence spectroscopy.
|
3 |
Development Of Atomic Force Microscopy System And Kelvin Probe Microscopy System For Use In Semiconductor Nanocrystal CharacterizationBostanci, Umut 01 August 2007 (has links) (PDF)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different growth conditions. Both characterization methods were applied to the nanocrystal samples. Variation of nanocrystal sizes with varying annealing temperature were observed. Kelvin spectroscopy measurements made on nanocrystal samples using the KPM apparatus displayed charging effects.
|
Page generated in 0.0539 seconds