• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the astromineralogy of the 13 [mu]m feature in the spectra of oxygen-rich AGB stars

DePew, Kyle David. January 2006 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 6, 2007) Includes bibliographical references.
2

Modelling of circumstellar environments around carbon and oxygen rich stars

Bagnulo, Stefano January 1996 (has links)
No description available.
3

Spectral Matching for Elemental Abundances of Evolved Stars of Globular Clusters

Simpson, Jeffrey January 2013 (has links)
In order to understand the origin of globular clusters, large samples of their stars need to be observed and analyzed for their chemical composition. This is especially true for the complex, multimetallic cluster ω Centauri, with its large range of iron, carbon, nitrogen, oxygen, sodium and barium abundances. In order to accomplish this, an automated spectral matching pipeline was developed to determine these abundances. This thesis made use of photometry and low resolution spectroscopy to analyze the chemical composition of evolved stars in three clusters: ω Cen, 47 Tuc and NGC 6752. The latter two clusters are monometallic and selected due to their similar metallicities to the metal-rich and metal-poor stars in ω Cen. This allowed them to be used as test-cases for the spectral matching pipeline. For ω Cen, two analyses were performed. In the first, 221 giant branch stars were selected that had known [O/Fe]. These stars showed the expected anticorrelation in [C/Fe]to [N/Fe]. In the second, spectral indices were used to estimate the oxygen abundance of the stars, leading to a determination of whether a particular star was oxygen-rich or oxygen-poor. From this a catalogue of abundances of iron, carbon and barium of 848 giant branch stars were determined, of which 557 also had well-defined nitrogen abundances. k-means clustering analysis was used to group the stars in ω Cen into four homogeneous groups based upon these abundances. These groups suggest that there were at least four main periods of star formation in the cluster. The exact order of these star formation events is not yet understood, with some models predicting the groups formed from iron-poorest to iron-richest, while others suggest the potential for iron-poorer groups to form after iron-rich groups. These results compare well with those found from higher resolution studies and show the value of more extensive lower resolution spectral surveys. They also highlight the need for large samples of stars when working with a complex object like ω Cen.
4

Tomography of evolved star atmospheres

Kravchenko, Kateryna 06 March 2019 (has links) (PDF)
Cool giant and supergiant stars are among the largest and most luminous stars in the Universe and, therefore, dominate the integrated light of their host galaxies. These stars were extensively studied during last few decades, however their relevant properties like photometric variability and mass loss are still poorly constrained. Understanding of these properties is crucial in the context of a broad range of astrophysical questions including chemical enrichment of the Universe, supernova progenitors, and the extragalactic distance scale. Atmospheres of giant and supergiant stars are characterized by complex dynamics due to different interacting processes, such as convection, pulsation, formation of molecules and dust, and the development of mass loss. Current 1D/3D dynamical model atmospeheres are able to simulate these processes and produce a good agreement with the observed spectral features of evolved stars. However, the models lack constraints and need to be confronted to observables. Dynamical processes in stellar atmospheres impact the formation of spectral lines producing their asymmetries and Doppler shifts. Thus, by studying the line-profile variations on spatial and temporal scales it is possible to reconstruct atmospheric motions in evolved stars. As will be shown in this thesis, a tomographic method is an ideal technique for this purpose. The tomographic method is based on construction and cross-correlation of spectral templates (masks) with observed or synthetic stellar spectra in order to recover velocity fields at different optical depths in the stellar atmosphere.The first part of the thesis further improves the original implementation of the tomographic method. This improvement involves the computation of the contribution function in order to correctly determine an optical depth of formation of spectral lines. The tomographic method is, then, fully validated by applying it to a stellar convection simulation of a red supergiant star and correctly recovering its velocity field throughout the atmosphere. The second part of the thesis applies the tomographic method to the red supergiant star μ Cep in order to constrain its atmospheric motions and relate them to photometric variability. A phase lag (hysteresis) between the effective temperature and the radial velocity variations is revealed with timescales of a few hundred days, similar to photometric ones. A comparison to a stellar convection simulation of a red supergiant star indicates that hysteresis loops are linked to the stochastic shocks generated and shaped by the underlying large-scale convection and may be responsible for photometric variations in μ Cep. The third part of the thesis applies the tomographic method to spectro-interferometric observations of the Mira-type star S Ori. The uniform-disk angular diameters measured at wavelengths contributing to the tomographic masks increase with decrease of an optical depth probed by the masks. This validates the capability of the tomographic method to probe distinct geometrical depths in the stellar atmosphere. The last part of the thesis applies the tomograhic method to the Mira-type star RY Cep and compares the results to those obtained for μ Cep in this thesis. The comparison reveals differences in their behavior in the temperature-velocity plane pointing to the posibility to differentiate between Mira-type and red supergiant stars from their spectroscopic signatures. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
5

Asymptotic giant branch stars : their influence on binary systems and the interstellar medium

Karakas, Amanda I. (Amanda Irene), 1974- January 2003 (has links)
Abstract not available
6

Pulsation Properties in Asymptotic Giant Branch Stars

Norgren, Ofelia January 2019 (has links)
Asymptotic Giant Branch (AGB) stars are stars with low- to intermediate mass in a late stage in their stellar evolution. An important feature of stellar evolution is the ongoing nucleosynthesis, the creation of heavier elements. Unlike main sequence stars, the AGB stars have a thick convective envelope which makes it possible to dredge-up the heavier fused elements from the stellar core to its surface. AGB stars are also pulsating variable stars, meaning the interior expands and contracts, causing the brightness to fluctuate. These pulsations will also play a major role in the mass loss observed in these stars. The mass loss is caused by stellar winds that accelerate gas and dust from the surface of these stars and thereby chemical enrich the interstellar medium. It is important to understand the properties of these pulsations since they play a key role in how stellar winds are produced and then enrich the galaxy with heavier synthesized elements. These pulsation periods can be observed with their corresponding Light-Curves, where the periodic motion of the brightness can be clearly seen. The main goal with this project is to calculate these pulsation periods for different AGB stars and compare these values with the periods listed in the General Catalogue of Variable Stars (GCVS). The comparison between these values gives a better understanding of methods of determining these periods and the uncertainties that follow. / Asymptotiska jättegrenen är en del av slutstadiet för låg- till medelmassiva stjärnor (AGB stjärnor). Ett viktigt kännetecken hos stjärnutvecklingen är den pågående nukleosyntesen, sammanslagningen av tyngre ämnen i stjärnans inre. Till skillnad mot stjärnor på huvudserien har AGB stjärnor ett tjockt konvektivt lager som gör det möjligt att dra upp dessa nybildade ämnen till stjärnans yta. AGB stjärnor är pulserande variabla stjärnor där variationer i stjärnans radie gör att ljusstyrkan varierar. Dessa pulsationer kommer även att spela en viktig roll för den massförlust som observeras hos dessa stjärnor. Massförlusten orsakas av stjärnvindar som accelererar gas och stoft från stjärnans yta och därmed kemiskt berikar det interstellära mediet. Det är viktigt att förstå dessa pulsationer eftersom de är en viktig komponent för hur stjärnvindar uppstår och sedan berikar galaxer med tyngre ämnen. Dessa pulsationsperioder kan studeras genom att observera stjärnornas ljuskurvor, där man tydligt ser det periodiska beteendet hos ljusstyrkan. Det huvudsakliga målet med detta projekt är att beräkna dessa perioder för olika AGB stjärnor och att sedan jämföra dem med värden från General Catalogue of Variable Stars (GCVS). Jämförelsen mellan dessa värden ger en bättre förståelse för metoderna som används för att bestämma dessa perioder och hur osäkra dessa värden är.
7

Binary evolution in the light of barium and related stars

Dermine, Tijl 23 September 2011 (has links)
Si l'évolution des étoiles simples est relativement bien comprise, l'étude des étoiles binaires, qui représentent la majorité des étoiles, nécessite encore des progrès majeurs, particulièrement en ce qui concerne leurs différents modes d'interactions. Dans ces systèmes, la composition de surface d'une étoile peut être altérée non seulement par l'accrétion d'éléments synthétisés au sein de l'étoile compagnon, mais également par des processus de mélanges internes induits par les forces de marées et d'un transport du moment angulaire. Plusieurs classes d'étoiles post-transfert de masse (les étoiles à baryum, CH et S) possèdent effectivement des compositions de surface caractérisées par la présence d'éléments lourds, tel que le baryum. Ces systèmes sont présumés se former au sein de systèmes binaires incluant une étoile de la branche asymptotique des géantes (appelé étoile AGB). Ces dernières sont des étoiles remarquables qui représentent l'unique site d'une nucléosynthèse particulière. En effet, elles constituent les contributeurs essentiels de la production de fluor ou de baryum. Les étoiles AGB sont également caractérisées par une importante perte de masse par vent qui éjecte progressivement leur enveloppe enrichie en ces éléments. Au sein d'un système binaire, une partie de ce vent est accréditée par l'étoile compagnon et pollue ainsi sa surface, laissant une signature spectrale distincte qui subsistera longtemps après que l'étoile AGB ait disparu. Ce scénario est suggéré comme étant responsable de la formation d'une grande variété d'étoiles chimiquement particulières, tels que les étoiles à baryum.<p>Cependant, plusieurs propriétés clés de ces systèmes, en particulier leurs distributions de périodes orbitales et d'excentricités, demeurent inexpliquées depuis des décennies. L'incapacité de nos modèles à reproduire ces propriétés orbitales met en évidence notre compréhension limitée des mécanismes d'interaction qui gouvernent l'évolution des systèmes binaires. Plus particulièrement, des mécanismes qui génèrent des orbites excentriques au sein des étoiles à baryum et des systèmes analogues sont requis. Nous examinons ainsi la possibilité qu'à sa naissance l'étoile naine blanche subisse un kick ou que la présence d'un disque entourant le système binaire soit à l'origine des fortes excentricités observées chez les étoiles à baryum. Ces deux mécanismes permettent pour la première fois depuis l'étude de ces systèmes d'apporter une solution à ces problèmes. Il est montré comment comprendre les signatures induites par un compagnon étoile AGB et les corréler avec les propriétés orbitales du système binaire est essentiel pour tester et améliorer notre connaissance de l'évolution des étoiles binaires; l'objectif de ce travail.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.3522 seconds