1 |
Numerical Simulations of Giant Planetary Core FormationNGO, HENRY 28 August 2012 (has links)
In the widely accepted core accretion model of planet formation, small rocky and/or icy bodies (planetesimals) accrete to form protoplanetary cores. Gas giant planets are believed to have solid cores that must reach a critical mass, ∼10 Earth masses (ME), after which there is rapid inflow of gas from the gas disk. In order to accrete the gas giants’ massive atmospheres, this step must occur within the gas disk’s lifetime (1 − 10 million years).
Numerical simulations of solid body accretion in the outer Solar System are performed using two integrators. The goal of these simulations is to investigate the effects of important dynamical processes instead of specifically recreating the formation of the Solar System’s giant planets.
The first integrator uses the Symplectic Massive Body Algorithm (SyMBA) with a modification to allow for planetesimal fragmentation. Due to computational constraints, this code has some physical limitations, specifically that the planetesimals themselves cannot grow, so protoplanets must be seeded in the simulations. The second integrator, the Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD), is more computationally expensive. However, its treatment of planetesimals allows for growth of potential giant planetary cores from a disk consisting only of planetesimals. Thus, this thesis’ preliminary simulations use the first integrator to explore a wider range of parameters while the main simulations use LIPAD to further investigate some specific processes.
These simulations are the first use of LIPAD to study giant planet formation and they identify a few important dynamical processes affecting core formation. Without any fragmentation, cores tend to grow to ∼2ME. When planetesimal fragmentation is included, the resulting fragments are easier to accrete and larger cores are formed (∼4ME). But, in half of the runs, the fragments force the entire system to migrate towards the Sun. In other half, outward migration via scattering off a large number of planetesimal helps the protoplanets grow and survive. However, in a preliminary set of simulations including protoplanetary fragmentation, very few collisions are found to result in accretion so it is difficult for any cores to form. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-08-20 14:48:39.443
|
2 |
<b>Formation and evolution of outer solar system components</b>Melissa Diane Cashion (18414999) 22 April 2024 (has links)
<p dir="ltr">We present a model describing an impact jetting origin for the formation of chondrules, the mm– scale, igneous components of chondritic meteorites which originated during the first few million years of solar system history. The ubiquity of chondrules in both non-carbonaceous and carbonaceous chondrites suggests their formation persisted throughout the protoplanetary disk, but their formation mechanism is debated and largely unexplored in the outer disk.<b> </b>Using the iSALE2D shock physics code, we generate models of the process of impact jetting during mixed material (dunite and water ice) impacts that mimic accretionary impacts that form giant planet cores. We show that the process of impact jetting provides the conditions necessary to satisfy critical first-order constraints on chondrule characteristics (size, shape, thermal history). We then explore the implications of chondrule formation by impact jetting during the formation of giant planet cores by combining the original results with simulations of giant planet core accretion generated using a Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD) code.</p><p dir="ltr">The second closest Galilean satellite to Jupiter is Europa, an ocean world with an outer ice shell and subsurface water ocean encapsulating its rocky core. The surface of Europa is covered in double ridges. These features are defined by two topographic highs about 100 meters tall, with a central trough between them, which extend for hundreds of kilometers over the surface of the moon. Accurate models for the formation of features as prominent as double ridges will help to further constrain the interior structure and dynamics of the interior of the body. We use analytical and numerical finite element models to show that the incremental growth of an ice wedge within the ice shell can cause deformation matching the observed size and shape of observed double ridges on Europa. These models indicate that the total height and width of the ridges correspond to the depth of the wedge, so that deeper wedges create shorter and broader ridges. We consider different sources for the wedge material and ultimately argue in favor of local sources of liquid water within the ice shell.</p>
|
3 |
Giant planet formation and migrationAyliffe, Benjamin A. January 2009 (has links)
This thesis describes efforts to improve the realism of numerical models of giant planet formation and migration in an attempt to better understand these processes. A new approach has been taken to the modelling of accretion, designed to mimic reality by allowing gas to accumulate upon a protoplanetary surface. Implementing this treatment in three-dimensional self-gravity radiation hydrodynamics calculations provides an excellent model for planet growth, allowing an exploration of the factors that affect accretion. Moreover, these calculations have also been extended to investigate the migration of protoplanets through their parent discs as they grow. When focusing on the growth of non-migrating protoplanets, the models are performed using small sections of disc, enabling excellent resolution right down to the core; gas structures and flow can be resolved on scales from ~ 10^4 to 10^11 metres. Using radiative transfer, these models reveal the importance of opacity in determining the accretion rates. For the low mass protoplanets, equivalent in mass to a giant planet core (~ 10 M⊕), the accretion rates were found to increase by up to an order of magnitude for a factor of 100 reduction in the grain opacity of the parent circumstellar disc. However, even these low opacities lead to growth rates that are an order of magnitude slower than those obtained in locally-isothermal conditions. For high mass protoplanets (>~ 100M⊕), the accretion rates show very little dependence upon opacity. Nevertheless, the rates obtained using radiative transfer are still lower than those obtained in locally-isothermal models by a factor of ~2, due to the release of accretion energy as heat. Only high mass protoplanets are found to be capable of developing circumplanetary discs, and this ability is dependent upon the opacity, as are the scaleheights of such discs. However, their radial extents were found to be independent of the opacity and the protoplanet mass, all reaching ≈ RH/3, inline with analytic predictions. Migration is investigated using global models, ensuring a self-consistently evolved disc. Using locally-isothermal calculations, it was found that the capture radius of an accreting sink particle, used to model a protoplanet without a surface, must be small (<< RH) to yield migration timescales consistent with linear theory of Type I migration. In the low mass regime of Type I migration, accreting sinks with such small radii yield timescales consistent with those models in which a protoplanetary surface is used. However, for high mass protoplanets, undergoing Type II migration, the surface treatment leads to faster rates of migration, indicating the importance of a realistic accretion model. Using radiative transfer, with high opacities, leads to a factor of ~ 3 increase in the migration timescale of the lowest mass protoplanets, improving their chances of survival. As suitable gas giant progenitors, their survival is key to understanding the growth of giant planets. An unexpected result of the radiative transfer was a reduction in the migration timescale of high mass planets. This appears to be a result of the less thoroughly evacuated gaps created by planets in non-locally-isothermal discs, which affects the corotation torque.
|
4 |
Probing the elemental composition of gas giant exoplanets in the context of their formation and evolutionPelletier, Stefan 08 1900 (has links)
Relier la composition atmosphérique des planètes géantes aux conditions de formation dans le disque protoplanétaire est un objectif de longue date de la communauté scientifique planétaire. C’est d’ailleurs un des facteurs qui a motivé l’envoi de satellites spatiaux vers les planètes géantes du système solaire externe, pour tenter de déterminer leur composition atmosphérique. Mais si je vous disais que certaines choses sont plus faciles à mesurer sur des exoplanètes situées à des centaines d’années-lumière de nous que sur Jupiter ou Saturne dans notre propre arrière-cour cosmique, me croiriez-vous ? Dans cette thèse, nous utilisons la spectroscopie à haute résolution avec différents instruments pour caractériser les atmo- sphères des exoplanètes géantes chaudes et en tirer toute information possible sur ce que leur composition présente implique vis-à-vis de leur historique de formation et d’évolution.
Dans une première étude, nous avons utilisé le spectrographe à haute résolution dans le proche infrarouge SPIRou pour observer l’émission thermique de la Jupiter chaude non transitante τ Boo b. Nos résultats ont révélé la présence d’une forte absorption de CO, mais une absence nette de signal du H2O. Grâce à un nouveau cadre d’analyse, nous avons pu déduire de manière robuste la forme de la structure verticale de température du côté jour de τ Boo b et contraindre les abondances de toutes les principales molécules contenant de l’oxygène et du carbone dans son atmosphère. Ceci nous a permis de dériver une abondance de C/H en phase gazeuse qui est élevée par rapport à celle du Soleil, comparable au niveau d’enrichissement de Jupiter. Nous avons également exploré l’hypothèse que la composition atmosphérique de τ Boo b pourrait être le résultat de son historique de formation, si elle s’est formée près de la ligne de glace du CO en accrétant du gaz enrichi.
Dans un second projet, nous avons utilisé le spectrographe optique haute résolution MAROON-X pour observer l’exoplanète géante ultra-chaude WASP-76b alors qu’elle pas- sait devant son étoile hôte. Ces données nous ont permis de détecter 16 espèces dans son atmosphère, y compris une première détection sans ambiguïté de la molécule d’oxyde de vanadium, considérée comme le moteur des inversions thermiques. En mesurant l’abondance relative des espèces observées, nous avons pu découvrir une transition abrupte dans la tem- pérature de condensation : où les éléments étaient soit dans des proportions proches de celles du soleil par rapport au fer, soit appauvris par des ordres de grandeur s’ils avaient des tem- pératures de condensation supérieures à 1550K. Nos résultats ont également montré que presque toutes les espèces détectées ont des signaux d’absorption asymétriques, indiquant que WASP-76b a probablement un hémisphère plus froid ou plus nuageux que l’autre.
Enfin, dans une troisième étude, nous avons observé l’émission thermique du côté jour de la Jupiter ultra-chaude WASP-121b en utilisant les spectrographes à haute résolution CRIRES+ et ESPRESSO. Avec cet ensemble de données combinées couvrant les longueurs d’onde optiques et proche infrarouge, nous avons pu détecter des signaux d’émission de CO, H2O, Fe, et Ni, indiquant que l’atmosphère de WASP-121b a une inversion thermique. Grâce à une analyse de récupération, nous avons ensuite mesuré simultanément et avec précision les abondances de C, O, Fe, et Ni, constatant que les éléments C et O, plus volatils, sont plus abondants que le Fe et Ni réfractaire. De cette composition atmosphérique déduite, nous avons pu conclure que WASP-121b a probablement accrété son enveloppe à une séparation orbitale beaucoup plus grande que sa position actuelle, à partir d’un matériau riche en glace.
Avec ces travaux, nous avons démontré la puissance des instruments et des techniques dis- ponibles aujourd’hui pour extraire beaucoup d’informations sur les atmosphères des Jupiters chaudes et ultra-chaudes. En particulier, la capacité de mesurer leur composition avec une grande précision nous a permis d’explorer des liens potentiels avec la formation, ce qui peut nous donner un aperçu des mécanismes physiques qui permettent la formation des planètes géantes. Cependant, il reste encore beaucoup à faire et nous espérons continuer à repousser les limites de ce que nous pouvons réaliser avec la spectroscopie à haute résolution, ainsi qu’à exploiter les synergies avec les observations complémentaires qui peuvent être obtenues avec des télescopes spatiaux tels que le JWST. / Relating the atmospheric composition of giant planets to formation conditions in the protoplanetary disc is a longstanding goal of the planetary science community. Indeed this has been one of the motivating factors for sending spacecrafts to the giant planets in the outer Solar System and try to determine their atmospheric compositions. But what if I told you that certain things are easier for us to measure on exoplanets hundreds of light years away from us than they are for Jupiter or Saturn in our own cosmic backyard – would you believe me? In this thesis we use high-resolution spectroscopy with different instruments to characterize the atmospheres of hot giant exoplanets and tease out any information we can about what their present-day compositions entail about their formation and evolution histories.
In a first work, we used the high-resolution SPIRou near-infrared spectrograph to observe the thermal emission of the non-transiting hot Jupiter τ Boo b. Our results showed the presence of strong CO absorption, but a distinct lack of an H2O signal. With a newly developed analysis framework, we were able to robustly infer the shape of the dayside vertical temperature structure of τ Boo b and constrain the abundances of all the major oxygen- and carbon-bearing molecules in its atmosphere. This allowed us to derive a gas-phase C/H abundance that is elevated with respect to that of the Sun, comparable to Jupiter’s enrichment levels. We further hypothesized that the atmospheric composition of τ Boo b may be the result of its formation history, if it formed near the CO snowline from enriched gas due to pebble drift.
In a second project, we used the high-resolution MAROON-X optical spectrograph to observe the ultra-hot giant exoplanet WASP-76b as it passed in front of its host star. From this data, we were able to detect 16 species in its atmosphere, including a first unambiguous detection of the vanadium oxide molecule thought to be a driver for thermal inversions. By measuring the relative abundances of the species observed, we were further able to discover a sharp transition in condensation temperature wherein elements were either in near-solar proportions relative to iron, or depleted by orders of magnitudes if they had condensation temperatures above 1,550 K. Our findings also showed that nearly all species detected have asymmetric absorption signals, indicating that WASP-76b likely has one hemisphere that is either colder or cloudier than the other.
Finally, in a third study we observed the dayside thermal emission of the ultra-hot Jupiter WASP-121b using both the CRIRES+ and ESPRESSO high-resolution spectrographs. With this combined data set covering both optical and near-infrared wavelengths, we were able to detect CO, H2O, Fe, and Ni emission signals, indicating that the atmosphere of WASP-121b has a thermal inversion. With a retrieval analysis, we then simultaneously and precisely measured abundances for C, O, Fe, and Ni finding that the more volatile C and O elements are more abundant than refractory Fe and Ni. From this inferred atmospheric composition, we were able to conclude that WASP-121b likely accreted its envelope at a much larger orbital separation than its present-day location, from material that was ice-rich.
With these works, we have demonstrated the power of now-available instrumentation and techniques to extract a wealth of information about the atmospheres of hot and ultra-hot Jupiters. In particular the ability to measure their compositions to high degrees of precision has allowed us to explore potential links to formation that may give us insights into the physical mechanisms that allow for giant planets to form. However, still much work remains, and hopefully we will continue to push the boundaries of what we can achieve with high- resolution spectroscopy, as well as leverage synergies with complementary observations that can be obtained with space-based telescopes such as the JWST.
|
Page generated in 0.1127 seconds