• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pathways and Transit Time of Meltwater in the Englacial Drainage System of Rabots Glacier, Kebnekaise, Sweden

Coch, Caroline January 2014 (has links)
Following the crash of a Norwegian Hercules aircraft on Rabots glaciär in the Kebnekaise mountain range in 2012, a field campaign was initiated in order to assess the fate of the hydrocarbon pollution in the system. It is hypothesized that soluble components of the aircraft fuel will be transported within the glacial meltwater. This thesis focuses on constraining the likely transit time and dispersion of the meltwater as a proxy for potential pollution pathways. Therefore, the hydrologic configuration of Rabots glaciär was studied during the ablation season 2013 by means of dye tracing experiments and discharge monitoring in the proglacial stream. The analyses of the dye return curves and stream monitoring suggest that Rabots glaciär exhibits a widely efficient drainage system towards the end of the ablation season, but with analyses revealing heterogeneity in the drainage system form. The seasonal evolution of efficiency was also assessed, showing an increase over time, although was hampered by early onset of melting before the field season began. There are different hydrological configurations on the north and south side of the glacier, possibly influenced by shading. The system on the north side is routing meltwater along the glacier bed over a long distance as indicated by the turbid outlet stream. Water routing on the southern side likely occurs through englacial channels. This configuration may be influenced by the thermal regime and distribution of cold surface layers. It has further been revealed that both systems are likely to be disconnected from each other. Pollution that is transported with the meltwater down from the crash site on the southern side does not reach the drainage system on the northern side. Besides revealing potential pathways for soluble hydrocarbon pollutants, this case study contributes to the previously very limited knowledge of Rabots glacial hydrology, and our general understanding of polythermal glacier hydrology.
2

Modelling the hydrology of the Greenland Ice Sheet

Banwell, Alison Frances January 2013 (has links)
There is increasing recognition that the hydrology of the Greenland Ice Sheet plays an important role in the dynamics and therefore mass balance of the ice sheet. Understanding the hydrology of the ice sheet and being able to predict its future behaviour is therefore a key aspect of glaciological research. To date, the ice sheet’s hydrology has tended to be inferred from the analysis of surface velocity measurements, or modelled in a theoretical, idealised way. This study focuses on the development of a high spatial (100 m) and temporal (1 hour) resolution, physically based, time-dependent hydrological model which is applied to the ~2,300 km2 Paakitsoq region, West Greenland, and is driven, calibrated, and evaluated using measured data. The model consists of three components. First, net runoff is calculated across the ice sheet from a distributed, surface energy- balance melt model coupled to a subsurface model, which calculates changes in temperature, density and water content in the snow, firn and upper-ice layers, and hence refreezing. The model is calibrated by adjusting key parameter values to minimize the error between modelled output and surface height and albedo measurements from the three Greenland Climate Network (GC-Net) stations, JAR 1, JAR 2 and Swiss Camp. Model performance is evaluated in two ways by comparing: i) modelled snow and ice distribution with that derived from Landsat-7 ETM+ satellite imagery using Normalised Difference Snow Index (NDSI) classification and supervised image thresholding; and ii) modelled albedo with that retrieved from the Moderate- resolution Imaging Spectroradiometer (MODIS) sensor MOD10A1 product. Second, a surface routing / lake filling model takes the time-series of calculated net runoff over the ice sheet and calculates flow paths and water velocities over the snow / ice covered surface, routing the water into ‘open’ moulins or into topographic depressions which can fill to form supraglacial lakes. This model component is calibrated against field measurements of a filling lake in the study area made during June 2011. Supraglacial lakes are able to drain by a simulated hydrofracture mechanism if they reach a critical volume. Once water is at the ice / bed interface, discharge and hydraulic head within subglacial drainage pathways are modelled using the third model component. This consists of an adaptation of a component (EXTRAN) of the U.S. Environmental Protection Agency Storm Water Management Model (SWMM), modified to allow for enlargement and closure of ice-walled conduits. The model is used to identify how the subglacial hydrological system evolves in space and time in response to varying surface water inputs due to melt and lake drainage events, driven ultimately by climate data. A key output from the model is the spatially and temporally varying water pressures which are of interest in helping to explain patterns of surface velocity and uplift found by others, and will ultimately be of interest for driving ice dynamics models.
3

Temporal variability of meltwater and sediment transfer dynamics at an Arctic glacier, Storglaciären, northern Sweden

Gravelle, Richard January 2014 (has links)
In glacierised regions, suspended sediment fluxes are highly responsive to climate-driven environmental change and can provide important information regarding the relationships between glacier variations, climate and geomorphic change. As a result, understanding patterns of suspended sediment transport and their relationship with meltwater delivery is of critical importance. However, studies of glacial suspended sediment transport are often limited by interpreting patterns of suspended sediment transfer based on whole-season data, allowing precise patterns to become masked. This thesis aims to contribute to the understanding of suspended sediment transfer in glacierised basins through the investigation of patterns of suspended sediment delivery to the proglacial area of Storglaciären, a small polythermal valley glacier located in the Tarfala valley, Arctic Sweden. High temporal resolution discharge and suspended sediment concentration data were collected during two summer field campaigns at Storglaciären. Interpretations of suspended sediment transport data were made using diurnal hysteresis and sediment availability data, combined with suspended sediment shape and magnitude data classified by applying principal component and hierarchical cluster analyses. Analysis of the dominant discharge generating processes at Storglaciären was also conducted using principal component analysis, allowing patterns of discharge to be better understood. This was complemented by analysis of the structure and evolution of the glacier drainage system by linear reservoir modelling and flow recession analysis. The results suggest that patterns of discharge and suspended sediment transport at Storglaciären are complex, with distinct processes and magnitudes of transport evident at both proglacial outlet streams, Nordjåkk and Sydjåkk. These processes are intrinsically linked to meteorological variables, with both ablation-driven and precipitation-driven discharge exerting influence over patterns of suspended sediment transport in the proglacial area of Storglaciären.
4

The hydrology of debris-covered glaciers

Fyffe, Catriona Louise January 2012 (has links)
Studies of glacier-hydrology have focused on clean Alpine glaciers, and recently ice sheet outlet glaciers, but there are few studies on debris-covered glaciers. It is known debris affects ablation rates, and that debris-covered glaciers evolve differently to their debris-free counterparts, but how the debris influences the hydrology is poorly understood. This thesis aims to understand the influence of the debris on the hydrological system and water balance of Miage Glacier, Western Italian Alps. The supraglacial hydrology was studied by modelling ablation using a distributed energy balance melt model, and measuring supraglacial stream discharges; the structure and evolution of the englacial and subglacial network was investigated using dye tracing and water chemistry monitoring; and the proglacial runoff was examined through detailed hydrograph analysis. Glacier velocity measurements were used to investigate the debris’ influence on the glacier dynamics. High ablation rates occurred on clean ice and beneath thin debris on the upper glacier, resulting in large supraglacial streams which led into an efficient drainage system. Glacier velocities had a greater magnitude and variability close to the upper glacier moulins. Thick debris on the lower glacier reduced ablation, and consequently the discharge of supraglacial streams and efficiency of the hydrological network. Despite locally inefficient subglacial drainage, glacier velocities on the lower glacier remained subdued, partly because the debris attenuated water inputs. This attenuation reduced the occurrence of high amplitude diurnal cycles in the proglacial runoff and confined them to particularly warm weather. Lag times from peak air temperature to peak runoff were long relative to comparable debris-free glaciers. Evaporation of rainfall from debris-surfaces was high, and dependant on the debris permeability, suggesting this is an important water balance component. Under climate warming, it is predicted the ablation of Miage Glacier will increase, but this may be negated given an increase in debris cover.

Page generated in 0.0719 seconds