• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 174
  • 40
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 12
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 338
  • 55
  • 54
  • 37
  • 36
  • 35
  • 35
  • 33
  • 30
  • 30
  • 29
  • 28
  • 25
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Present-day and future contributions of glacier melt to the Upper Middle Fork Hood River : implications for water management /

Phillippe, Jeff. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 75-83). Also available on the World Wide Web.
142

Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska /

Crossen, Kristine June. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [148]-161).
143

Late Little Ice Age glacier fluctuations in the Cascade Range of Washington and northern Oregon /

O'Neal, Michael Aaron. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 99-111).
144

Ice Stream Dynamics: A Transition between Sheet Flow and Shelf Flow

Hofstede, Coen Matthijs January 2008 (has links) (PDF)
No description available.
145

A Mass Balance Study of the West Antarctic Ice Sheet

Spikes, Vandy Blue January 2003 (has links) (PDF)
No description available.
146

Ice-ocean interactions in north west Greenland

Millgate, Thomas January 2015 (has links)
Ice shelves play an important role in the mass balance of an ice sheet, by providing a link between the ocean and ice. Melting at the base of an ice shelf can play a vital role in its mass balance and stability. Topographic channel features have been found on the base of ice shelves, and have been found to alter melting, however the mechanism behind this alteration is unknown. Petermann Glacier is a major outlet glacier in North West Greenland, draining approximately 6% of Greenland Ice Sheet. It terminates in a long, thin ice shelf, constrained within a high-walled fjord. The ice shelf has pronounced longitudinal channel features on its base, which limited observations suggest direct ocean currents in a mixed layer of ocean and melt waters, focusing melt in these regions. Petermann Glacier underwent two large calving events in 2010 and 2012, and the impact of these events, or possible further calving events, on basal melting is unknown. Using the MITgcm to model the ocean cavity beneath an idealised ice shelf, this thesis discusses the impact of basal channels on interactions at the ice base and circulation within the cavity. This is supplemented with a modelling investigation into the interactions beneath Petermann Glacier, and the impact of recent calving events. The inclusion of channels was found to have a stabilising effect on the ice shelf by decreasing the mean basal melt rate, caused by the refocusing, and decrease in intensity of, the meltwater layer flow beneath the ice shelf. This stabilisation and resulting 'survivor bias' explains why channels are commonly found on the base of warm water ice shelves. The model of Petermann Glacier found similar melt patterns to observational studies, however with a lesser magnitude. The calving events of 2010 and 2012 removed areas of ice shelf with low melt rates, resulting in little impact on the overall volume of ice removed through ocean melting, though further calving would vastly reduce the volume of ice melted. One consequence of calving is the increase in melting-induced undercutting at the ice front, leading to the potential for enhanced secondary calving.
147

Influence de la couverture détritique sur le bilan de masse des glaciers des Hautes Montagnes d’Asie : une approche multi-échelle / Impact of the debris cover on High Mountain Asia glacier mass balances : a multi-scale approach

Brun, Fanny 10 September 2018 (has links)
Les Hautes Montagnes d’Asie (HMA) abritent la plus grande superficie de glaciers en dehors des régions polaires. Environ 15 % des ~100 000 km² de glaciers des HMA sont couverts de débris d’épaisseur variable. L’influence de cette couverture détritique sur la réponse des glaciers au changement climatique reste méconnue. Au-delà d’une épaisseur critique (quelques cm), les débris protègent les glaciers de la fonte par effet isolant. Mais ces glaciers présentent des structures qui pourraient sensiblement accentuer leur fonte : en surface ce sont les falaises où la glace est à nue et les lacs supra-glaciaires, alors qu’au cœur des glaciers c’est leur réseau hydrologique intra-glaciaire complexe. L’objectif de cette thèse est d’évaluer l’influence de la couverture détritique sur le bilan de masse des glaciers des HMA. Jusqu’à présent, cette influence a été évaluée à partir de changements de longueurs ou sur des échantillons de glaciers restreints, et aucune étude n’a quantifié l’influence de la couverture détritique sur le bilan de masse des glaciers à grande échelle.Nous avons d’abord traité plus de 50 000 couples stéréoscopiques du capteur ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) pour dériver des modèles numériques de terrain (MNTs) sur la quasi-totalité des glaciers des HMA. Nous avons mesuré ainsi le bilan de masse régional entre 2000 et 2016 avec une résolution jamais atteinte auparavant. La perte totale est de 16.3 ± 3.5 Gt a-1 soit un bilan de masse moyen de -0.18 ± 0.04 m équivalent (éq.) eau a-1, très variable spatialement, avec une perte de masse record pour le Nyainqentanglha (-0.62 ± 0.23 m éq. eau a-1) et un léger gain pour le Kunlun (+0.14 ± 0.08 m éq. eau a-1).Cette variabilité spatiale des bilans de masse reflète au premier ordre la variabilité des climats, différents d’un bout à l’autre des HMA. Pour s’en affranchir, nous avons découpé cette région en 12 sous-régions supposées homogènes climatiquement, où nous avons étudié l’influence de la couverture détritique sur le bilan de masse des glaciers de plus de 2 km² (>6 500 glaciers soit 54 % de la surface englacée totale). Statistiquement, la couverture de débris n’est pas un bon prédicteur du bilan de masse. Dans quatre sous-régions, les glaciers couverts ont des bilans de masse plus négatifs que les glaciers blancs, c’est l’opposé dans le Tien Shan alors que pour les sept sous-régions restantes, les bilans ne sont pas différents statistiquement entre glaciers blancs et couverts. Souvent, la couverture détritique a une influence plus faible que la pente de la langue ou l’altitude moyenne du glacier, car les langues couvertes de débris descendent plus bas en altitude, là où l’ablation est la plus forte.Ce type d’étude statistique est intéressant pour se forger une intuition, mais reste peu informatif en termes de compréhension des processus glaciologiques. Pour mieux contraindre les contributions des processus responsables de la fonte, nous avons travaillé en parallèle à une échelle plus fine en nous intéressant au glacier du Changri Nup (2.7 km²) situé non loin de l’Everest au Népal. A partir de MNTs haute résolution dérivés d’images des satellites Pléiades ou acquises avec un drone, nous avons montré que les falaises de glace, bien qu’elles n’occupent que 7 à 8 % de la surface de la langue de ce glacier, ont contribué à ~23 ± 5 % de l’ablation nette totale au cours de deux années contrastées. Ces falaises sont donc des zones d’ablation préférentielle mais couvrent des surfaces trop faibles pour compenser la réduction d’ablation induite par la couverture détritique environnante. Si l’on observe des taux d’amincissement similaires sur les langues couvertes ou non de débris, c’est que la vitesse d’émergence est plus faible sur les langues couvertes ce qui compense un bilan de masse de surface moins négatif que sur les glaciers blancs. Il est néanmoins nécessaire de mieux comprendre la dynamique des langues couvertes de débris. / High Mountain Asia (HMA) hosts the largest glacierized area outside the polar regions. Approximately 15 % of the ~100 000 km² of HMA glaciers is covered by a debris layer of various thickness. The influence of this debris on the HMA glacier response to climate change remains debated. In principle, the presence of a thick layer of debris reduces the melt of the ice beneath it, due to the insulating effect. However, other processes such as ablation of bare ice cliff faces, subaqueous melt of supraglacial ponds and internal ablation due to englacial hydrology could substantially contribute to enhance the debris-covered glacier mass losses. The aim of this PhD work is to assess the impact of the debris on glacier mass balance in HMA. Up to now, the influence of the debris cover has been assessed through glacier front position changes or on a restricted sample of glaciers, and no large scale study of the influence of the debris cover on the glacier-wide mass balance is available.As a starting point, we derived glacier mass changes for the period 2000-2016 for the entire HMA, with an unprecedented resolution, using time series of digital elevation models (DEMs) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical satellite imagery. We calculated a total mass loss of -16.3 ± 3.5 Gt yr-1 (-0.18 ± 0.04 m w.e. yr-1) with contrasted rates of regionally-averaged mass changes ranging from -0.62 ± 0.23 m w.e. yr-1 for the eastern Nyainqentanglha to +0.14 ± 0.08 m w.e. yr-1 for the western Kunlun Shan.At the scale of HMA, the pattern of glacier mass changes is not related to the presence of debris, but is linked with the climatology. Consequently, we studied the influence of the debris-cover on mass balance within climatically homogeneous regions. Based on the mass balances of individual glaciers larger than 2 km² (more than 6 500 glaciers, which represent 54% of the total glacierized area), we found that debris-covered glaciers have significantly more negative mass balances for four regions out of twelve, a significantly less negative mass balance for one region and non-significantly different mass balances for the remaining seven regions. The debris-cover is generally a less significant predictor of the mass balance than the slope of the glacier tongue or the glacier mean elevation. The influence of the debris is not completely clear and complicated to untangle from the effect of the other morphological parameters, because heavily debris-covered tongues are situated at lower elevations than debris-free tongues, where ablation is higher.However, such a statistical analysis of the influence of the debris-cover on the glacier-wide mass balance variability is not very informative in terms of glaciological processes. In order to better constrain the contribution of the different ablation processes on debris-covered tongues, work at a finer scale is required. For the debris-covered tongue of Changri Nup Glacier, Everest region, Nepal, we quantified the contribution of ice cliffs to the ablation budget. Using a combination of very high resolution DEMs derived from Pléiades images and an unmanned aerial vehicle, we found that ice cliffs contributed to ~23 ± 5 % of the total net ablation of the tongue, over two contrasted years, although they occupy only 7 to 8 % of its area. Ice cliffs are large contributors to the ablation of a debris-covered tongue, but they cannot alone explain the so-called debris cover anomaly, i.e. the fact that debris free and debris covered tongues have similar thinning rates. This anomaly is probably due to smaller emergence velocity over debris-covered tongues than over debris-free tongues, resulting in similar thinning rates, despite less negative surface mass balance rates. We advocate for more measurements of ice thickness of debris-covered tongues in order to better understand their dynamics.
148

Hydrometeorological Variability over Pakistan

Bashir, Furrukh, Bashir, Furrukh January 2017 (has links)
Pakistan, as an agriculture based economy, is vulnerable to various hydrometeorological hazards ranging from tropical cyclones, thunderstorms, tornadoes, drought, rain, hail, snow, lightning, fog, wind, temperature extremes, air pollution, and climatic change. However, three of the most pressing challenges in terms of water resource availability, that are different in nature, but are inter-linked to each other are discussed over here. We begin with the Karakoram Anomaly that is considered as one of the most mysterious and most speculated phenomena on Planet Earth. Though, it is confined to the glaciers in the eastern Hindukush, western Karakoram and northwestern Himalayan mountain ranges of Northern Pakistan that are not responding to global warming in the same manner as their counterparts elsewhere, because, their retreat rates are less than the global average, and some are either stable or growing. However, the Karakoram Anomaly has baffled scientific society for more than a decade since its earliest discovery in the year 2005. The reasons of the Karakoram anomaly were mainly associated to physiography of the area and role of climate was considered marginal till now, as climate is influencing glaciers differently all over the globe. Here, for the first time, we present a hydro-meteorological perspective based on five decades of synoptic weather observations collected by the meteorological network of Pakistan. Analysis of this unique data set indicates that increased regional scale humidity, cloud cover, and precipitation, along with decreased net radiation, near-surface wind speed, potential evapotranspiration and river flow, especially during the summer season, represent a substantial change in the energy, mass and momentum fluxes that are facilitating the establishment of the Karakoram Anomaly. In turn, it is influencing the availability of glacier melt in River Indus in summer season. Secondly, we developed a hydrometeorological data sets for Pakistan as they are extremely important for water related impact studies and future climate change scenarios. Presently, major sources of gridded temperature and precipitation data generation are in-situ observations, satellite retrieved information and outputs from numerical models. However, each has its own merits and demerits. Among them gridded observed data sets are considered superior if the gauge density is better. Unfortunately, precipitation gauge network of Pakistan is poorly presented in prior gridded products. Therefore, a daily in-situ observation based, 0.05º×0.05º gridded temperature and precipitation data set for Pakistan, for the period of 1960-2013 is developed. It is named as PAK-HYM-1.0, that is an abbreviation of Pakistan and Hydrometeorology, and 1.0 indicates that it is the first version. This data set is developed by utilizing data from 67 meteorological stations of Pakistan. This number of observation sites is 2 to 4 times higher than that used in prior similar products, and this product can be adopted as an operational information product that can be updated on daily basis. Finally, we focused on meteorological and hydrological droughts in Pakistan. We have reconstructed history of drought in Pakistan using in situ observations based high resolution gridded data through Standardized Precipitation Index (SPI) methodology on different time scales. Furthermore, we have explained the transition of meteorological drought to hydrological drought using river inflows data of large rivers of Pakistan, and explained the sensitivity of different rivers to rainfall and temperature of different seasons. On the basis of this analysis, we have proposed a solution of construction of water reservoirs to tap water resources from northern mountains as inflows from these mountains has potential to perform as a buffer against droughts in low-lying areas of Pakistan. In addition to that, we have demonstrated the potential of Palmer Drought Sensitivity Index (PDSI) as an operational tool for drought monitoring in Pakistan.
149

New Understanding of Iceberg Calving, Mass Loss, and Glacier Dynamics in Greenland Through Analysis of Glacial Earthquakes

Olsen, Kira January 2020 (has links)
I apply a suite of seismic techniques to investigate iceberg calving at large glaciers around Greenland. Iceberg calving accounts for up to half of the Greenland Ice Sheet's annual mass loss, which makes understanding the physics of the calving process vital to gaining a clear picture of current behavior and future evolution of the Greenland Ice Sheet. However, the varied and complex modes of calving behavior at individual glaciers, paired with the challenges to data collection presented by an actively calving glacier, mean that much remains unknown about the dynamics of calving at marine-terminating glaciers. Seismic data offer a unique opportunity to study this active phenomenon, by allowing remote observation of calving events and quantification of the forces active during calving. Using seismic data collected during the most productive three years of buoyancy-driven calving on record, I estimate the forces active during iceberg calving at 13 glaciers around Greenland. My waveform-modeling results highlight the large number of buoyancy-driven calving events currently occurring at Jakobshavn Isbrae and other glaciers in west Greenland. I demonstrate that a glacier's grounded state exerts control on the production or cessation of rotational calving events and investigate the dynamics of calving at individual glaciers. I pair seismic results with terminus imagery to identify the location of individual calving events within calving sequences that occur over days to weeks at a single glacier terminus. By applying a new cross-correlation technique to seismic data collected within 100 km of three of Greenland's largest glaciers, I identify the occurrence of buoyancy-driven calving events with iceberg volumes up to two orders of magnitude smaller than previously observed. These small calving events frequently occur within ~30 minutes of a larger calving event. In between calving sequences, a glacier terminus changes little, suggesting that the majority of ice lost from marine-terminating glaciers occurs through these sequences. I estimate that these small events may contribute up to 30% more to dynamic mass loss than previously thought (up to 15 Gt/yr). I find no evidence of the cliff failure predicted by the marine-ice-cliff-instability hypothesis, in which catastrophic failure occurs when an ice cliff reaches a theoretical maximum-height limit, despite the three glaciers I investigate in detail having some of the tallest ice cliffs in the world. I use independent constraints on iceberg size from high-quality terminus imagery to present the first demonstration of an empirical relationship between glacial-earthquake magnitude and iceberg size. I investigate this relationship further by considering additional metrics of glacial-earthquake magnitude, and find advantages to using maximum force, rather than the more commonly employed mass-distance product Mcsf, as a measure of glacial-earthquake size. Through a detailed investigation into the character of the glacial-earthquake source, I identify key characteristics of the source function that generates the glacial-earthquake signal. I use experiments on both synthetic and observed waveforms to demonstrate that more-accurate estimates of glacial-earthquake size can be retrieved using source models constructed using a representation of the force history that is more sophisticated than that captured by the simple boxcar model. I confirm the presence of a correlation between iceberg volume and glacial-earthquake size, which moves us closer to having the ability to use remotely recorded seismic signals to quantify mass loss at Greenland glaciers. This work presents testable hypotheses for future model development.
150

An assessment of the ice masses of Axel Heiberg Island, N.W.T. : a study of glacier inventory

Ommanney, C. Simon L., 1942- January 1968 (has links)
Note:

Page generated in 0.0652 seconds