• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Verres et vitrocéramiques à base de chalco: halogénures dopés par des ions de terres rares pour la luminescence dans le visible

Ledemi, Yannick André Georges [UNESP] 24 October 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-10-24Bitstream added on 2014-06-13T18:46:25Z : No. of bitstreams: 1 ledemi_yag_dr_araiq.pdf: 4381823 bytes, checksum: a988190ae336a68b630fd0469bbb9ed7 (MD5) / Les travaux présentés dans ce manuscrit concernent l’étude de nouvelles vitrocéramiques transparentes à base de chalco-halogénures dopées par des ions de terres pour la luminescence dans le visible. L’addition de différents halogénures d’alcalins à des verres du système Ga2S3-GeS2 a été étudiée avec l’objectif d’étendre leur transparence vers l’ultraviolet. Des verres du système Ga2S3- GeS2-CsCl complètement transparents dans le visible (400-750 nm) jusqu’au moyen infrarouge (11,5 μm) ont été obtenus. Des vitrocéramiques transparentes et homogènes ont ensuite été préparées de manière contrôlée à partir de plusieurs verres à différentes teneurs en CsCl dans le système Ga2S3-GeS2-CsCl. Des nanocristallites de taille homogène et uniformément dispersées dans la matrice amorphe sont formées de manière reproductible par des traitements thermiques appropriés. Une étude d’un point de vue structural de la cristallisation a été réalisée par diffraction de rayons X et résonance magnétique nucléaire à l’état solide sur les noyaux 71Ga et 133Cs. Le rôle d’agent de nucléation du gallium a été mis en évidence dans cette matrice avec la cristallisation d’une phase Ga2S3. Un meilleur comportement mécanique a également été observé pour les matériaux composites préparés. Des vitrocéramiques dopées par des ions de terres rares (praséodyme Pr3+ et néodyme Nd3+) ont été synthétisées dans le système Ga2S3-GeS2-CsCl. L’évolution de la luminescence dans le visible des ions Pr3+ et Nd3+ a été étudiée en fonction des conditions de traitement thermique. Au vu des résultats obtenus, il semble que l’ion Pr3+ ne soit pas incorporé dans les cristallites. Une augmentation de la luminescence de l’ion Nd3+ a en revanche été constatée, suggérant une incorporation partielle de ces ions dans une phase cristalline... (Résumé complet accès électronique ci - dessous) / Vitrocerâmicas transparentes baseadas em novas composições de calco-halogenetos dopadas com íons de terras raras foram produzidas com o objetivo de gerar luz no visível. A adição de diferentes halogenetos alcalinos em vidros do sistema Ga2S3-GeS2 foi estudada com a finalidade de aumentar a sua janela de transparência no ultravioleta. Vidros no sistema Ga2S3- GeS2-CsCl totalmente transparentes no visível (400-750 nm) até a região do infravermelho médio (11,5μm) foram obtidos. Vitrocerâmicas transparentes e homogêneas foram em seguida preparadas a partir de vidros variando a concentração de CsCl no sistema Ga2S3-GeS2-CsCl. As condições dos tratamentos térmicos (temperaturas e tempos) foram estabelecidas permitindo o controle dos processos de nucleação e crescimento dos cristalitos dentro da matriz vítrea. Nanocristalitos uniformemente distribuídos e com tamanho homogêneo foram obtidos e confirmados por microscopia eletrônica de varredura (MEV) e microscopia eletrônica de transmissão (MET). Estudos estruturais foram realizadas nas vitrocerâmicas utilizando-se as técnicas de difração de raios X e resonância magnetica nuclear do sólido do 133Cs e 71Ga. Foi evidenciado o papel do agente de nucleação do gálio neste material, com a cristalização da fase Ga2S3. Um aumento da resistência mecânica foi também observado nestes materiais em comparação aos vidros de base. Em seguida, vitrocerâmicas dopadas com íons de terras raras (praseodímio Pr3+ e neodímio Nd3+) foram sintetizadas no sistema Ga2S3-GeS2-CsCl. A luminescência dos íons Pr3+ e Nd3+ no visível foi estudada em função dos tratamentos térmicos aplicados aos materiais. Foi observado que não houve a incorporação dos íons Pr3+na matriz. Por outro lado, um aumento da fluorescência do íon Nd3+ foi observado, sugerindo uma incorporação parcial destes íons dentro da fase cristalina... / The present work deals with the study of new chalco-halide glass-ceramics doped with rare earth ions for visible luminescence. The effect of the addition of different alkali-halide into glasses belonging to the Ga2S3-GeS2 system has been studied with the aim to extend their transparency into the ultraviolet region. Glasses transparent over the visible range (400-750 nm) up to the mid infrared (11,5 μm) have been obtained in the Ga2S3-GeS2-CsCl system. Transparent and homogeneous glass-ceramics have been prepared from several base glasses varying the CsCl content in the Ga2S3-GeS2-CsCl system. Nanocrystals with homogeneous size and uniformly distributed in the amorphous matrix have been generated with reproducibility by appropriate heat-treatment. A structural study of the crystallization has been realized using X-ray diffraction and solid state nuclear magnetic resonance performed on the 71Ga and 133Cs nuclei. The nucleating agent character of gallium has been shown in the glassy matrix with the crystallization of the Ga2S3 phase. An improved mechanical behaviour has also been observed in the prepared composite materials. Rare-earth ion (praseodymium Pr3+ and neodymium Nd3+) doped glass-ceramics have been synthesized in the Ga2S3-GeS2-CsCl system. The visible luminescence from Pr3+ and Nd3+ ions has been studied as a function of heat-treatment conditions. It appeared from experiments that Pr3+ ions are not incorporated into the crystals contrary to the Nd3+ ions from which an enhanced luminescence was observed, suggesting their partial integration into the crystalline phase. Finally, silver and Pr3+ doped glasses have been synthesized in the Ga2S3-GeS2 system. Metallic silver nanoparticles were generated by heat-treatment at 370°C and characterized by transmission electronic microscopy. The influence of the NPs on the Pr3+ ions luminescence properties was studied by performing frequency... (Complete abstract click electronic access below)
22

Calcium phosphate glasses and glass-ceramics for medical applications

De Mestral, François January 1986 (has links)
No description available.
23

Chalcogenide Glasses for Infrared Applications: New Synthesis Routes and Rare Earth Doping

Hubert, Mathieu January 2012 (has links)
Chalcogenide glasses and glass-ceramics present a high interest for the production of thermal imaging lenses transparent in the 3-5 μm and 8-12 μm windows. However, chalcogenide glasses are conventionally synthesized in sealed silica ampoules which have two major drawbacks. First, the low thermal conductivity of silica limits the sample dimensions and second the silica tubes employed are single use and expensive, and represent up to 30% of the final cost of the material. The present work therefore addresses the development of innovative synthesis methods for chalcogenide glass and glass-ceramics that can present an alternative to the silica tube route. The method investigated involves melting the raw starting elements in reusable silica containers. This method is suitable for the synthesis of stable chalcogenide glasses compositions such as GeSe₄ but uncontrolled crystallization and homogenization problems are experienced for less stable compositions. The second approach involves preparation of amorphous chalcogenide powders by ball milling of raw elements. This mechanosynthesis step is followed by consolidation of the resulting powders to produce bulk glasses. Hot Uniaxial Pressing is suitable for compositions stable against crystallization. However, uncontrolled crystallization occurs for the unstable 80GeSe₂-20Ga₂Se₃ glass composition. In contrast consolidation through Spark Plasma Sintering (SPS) allows production of bulk glasses in a short duration at relatively low temperatures and is appropriate for the synthesis of unstable glasses. A sintering stage of only 2 min at 390°C is shown to be sufficient to obtain infrared transparent 80GeSe₂-20Ga₂Se₃ bulk glasses. This method enables the production of lenses with a 4-fold increase in diameter in comparison to those obtained by melt/quenching technique. Moreover, increasing the SPS treatment duration yielded infrared transparent glass-ceramics with enhanced mechanical properties. This innovative synthesis method combining mechanosynthesis and SPS has been patented in the framework if this study. The controlled etching of 80GeSe₂-20Ga₂Se₃ glass-ceramics in acid solution yields nanoporous materials with enhanced surface area. The porous layer created on the surface of the glass-ceramic is shown to play the role of anti-reflection coating and increase the optical transmission in the infrared range by up to 10%. These materials may have potential for the production of sensors with increased sensitivity in the infrared. The influence of indium and lead addition on the thermal and optical properties of the 80GeSe₂-20Ga₂Se₃ glass has also been assessed. Increased In or Pb contents tend to decrease the Tg of the glasses and shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe₂-Ga₂Se₃-In₂Se₃ and GeSe₂-Ga₂Se₃-PbSe. No crystallization of the In₂Se₃ and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe₂-20Ga₂Se₃ glass-ceramics transparent in the infrared region up to 16 μm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.
24

Microstructure and mechanical properties of glass-ceramics from the MgO-Al₂O₃-SiO₂ system for ballistic protection / Microstructure et propriétés mécaniques des vitrocéramiques du système mgo-Al₂o₃-SiO₂ pour la protection balistique

Gallo, Leonardo Sant'ana- 26 September 2016 (has links)
Afin d'examiner les effets de la cristallisation sur certaines propriétés mécaniques, l'évolution du module de Young (E), du module de cisaillement (G) et du coefficient de Poisson, ainsi que la séquence des phases cristallines formées au cours d'un traitement thermique en deux étapes ont été accompagnées sur un verre baptisé 75-25, du système MgO-Al2O3-SiO2 (MAS), en utilisant TiO2 comme le principal agent de nucléation. L'évolution de la dureté et de la résistance à la rupture a aussi été examinée. La diffractométrie de Rayons X à haute température a révélé, après cristallisation, la présence de spinelle (MgO.Al2O3) rutile (TiO2), karooite (MgO.2TiO2), sillimanite (Al2O3.SiO2) et la saphirine (4MgO.5Al2O3.2SiO2). Les modules élastiques et de cisaillement des vitrocéramiques (VC) se sont montré environ 20% plus élevés que ceux du verre précurseur. Les valeurs de dureté obtenues sont proches de 10 GPa et KIC proche de 1,2 MPa.m1/2. Dans le but de fabriquer des VCs transparentes et incolores, de nouvelles formulations, dénommées ZT1B4, 75-25/ZT et 75-25/25TI, avec des teneurs en TiO2 réduites et des teneurs en ZrO2 plus élevées, ont été proposées et cristallisées. La formulation ZT1B4 a produit une VC transparente avec une dureté maximale de 8GPa et une ténacité à la fracture (TF) à peu près 40% plus élevée que celle du verre de base. Les formulations 75-25 ZT et 75-25/25Ti ont produit des VC transparentes avec des valeurs de dureté allant jusqu'à 9GPa et une ténacité à la fracture jusqu'à 35% plus élevée que celle du verre de base. Une série de verres ont été fondus en utilisant Ag métallique, au lieu de ZrO2 et TiO2, en tant qu'agent de nucléation. Les traitements thermiques appliqués ont produit des VCs non-homogènes, qui perdent la forme en raison des températures de cristallisation élevées. Ces nouveaux verres précurseurs ont donc été écartés. La transmittance dans la région de l'ultraviolet et visible a été mesurée dans les échantillons de verre et VCs de formulation 75-25, 75-25 / ZT et 75-25 / 25TI. La formulation 75-25 / ZT a présenté la plus haute transmittance soit à l'état vitreux ou en forme de vitrocéramique. En conclusion, parmi les nouvelles compositions, la formulation 75-25 / ZT est la plus adéquate pour une utilisation en tant que protection balistique, lorsque la transparence à la lumière visible est nécessaire. / In situ experiments were conducted on a glass dubbed 75-25, of the MgO-Al2O3-SiO2 (MAS) system, using TiO2 as the main nucleating agent, in order to examine the evolution of Young’s modulus (E), shear modulus (G) and Poisson's ratio, and the sequence of the crystalline phases formed during a double-stage heat treatment. The effects of crystallization on hardness and fracture toughness were also examined. High temperature X-ray diffraction experiments revealed the presence of spinel (MgO.Al2O3), rutile (TiO2), karooite (MgO.2TiO2), sillimanite (Al2O3.SiO2) and sapphirine (4MgO.5Al2O3.2SiO2) after crystallization. The elastic and shear moduli of the glass-ceramics (GC) were approximately 20% larger than those of the parent glass. Hardness values were close to 10 GPa and KIC close to 1.2 MPa.m1/2. Aiming to obtain transparent and colorless GC, new formulations, dubbed ZT1B4, 75-25/ZT and 75-25/25Ti, with lower titania content and higher zirconia content, were proposed and crystallized. Formulation ZT1B4 yielded a transparent GC with hardness of up to 8 GPa and an indentation fracture toughness (IFT) about 40% higher than that of the parent glass. Formulations 75-25/ZT and 75-25/25Ti yielded transparent GC with hardness values of up to 9 GPa and an IFT up to 35% higher than that of the parent glass. A series of glasses were also melted using metallic Ag as nucleating agent instead of ZrO2 and TiO2. The applied heat treatments generated non-homogeneous GC, which became warped due to the high crystallization temperatures. These new precursor glasses were therefore discarded. Transmittance in the ultraviolet to visible range was measured in the glass and GC samples of formulations 75-25, 75-25/ZT and 75-25/25Ti. Formulation 75-25/ZT presented the highest transmittance in both glass and GC states. It was concluded that among the new compositions, formulation 75-25/ZT is the most suitable one for use as ballistic protection when transparency to visible light is required.
25

Site selective spectroscopy of Eu3+ in the glass ceramic forming system Na2O.CaO.Al2O3.TiO2.SiO2

Belliveau, Thomas F. January 1988 (has links)
No description available.
26

Nanocomposite glass-ceramic scintillators for radiation spectroscopy

Barta, Meredith Brooke 24 October 2012 (has links)
In recent years, the United States Departments of Homeland Security (DHS) and Customs and Border Protection (CBP) have been charged with the task of scanning every cargo container crossing domestic borders for illicit radioactive material. This is accomplished by using gamma-ray detection systems capable of discriminating between non-threatening radioisotopes, such as Cs-137, which is often used in nuclear medicine, and fissile material, such as U-238, that can be used to make nuclear weapons or "dirty" bombs. Scintillation detector systems, specifically thallium-doped sodium iodide (NaI(Tl)) single crystals, are by far the most popular choice for this purpose because they are inexpensive relative to other types of detectors, but are still able to identify isotopes with reasonable accuracy. However, increased demand for these systems has served as a catalyst for the research and development of new scintillator materials with potential to surpass NaI(Tl). The focus of a majority of recent scintillator materials research has centered on sintered transparent ceramics, phosphor-doped organic matrices, and the development of novel single crystal compositions. Some of the most promising new materials are glass-ceramic nanocomposites. By precipitating a dense array of nano-scale scintillating crystals rather than growing a single monolith, novel compositions such as LaBr₃(Ce) may be fabricated to useful sizes, and their potential to supersede the energy resolution of NaI(Tl) can be fully explored. Also, because glass-ceramic synthesis begins by casting a homogeneous glass melt, a broad range of geometries beyond the ubiquitous cylinder can be fabricated and characterized. Finally, the glass matrix ensures environmental isolation of the hygroscopic scintillating crystals, and so glass-ceramic scintillators show potential to serve as viable detectors in alpha- and neutron-spectroscopy in addition to gamma-rays. However, for the improvements promised by glass-ceramics to become reality, several material properties must be considered. These include the degree of control over precipitated crystallite size, the solubility limit of the glass matrix with respect to the scintillating compounds, the variation in maximum achievable light yield with composition, and the peak wavelength of emitted photons. Studies will focus on three base glass systems, sodium-aluminosilicate (NAS), sodium-borosilicate (NBS), and alumino-borosilicate (ABS), into which a cerium-doped gadolinium bromide (GdBr₃(Ce)) scintillating phase will be incorporated. Scintillator volumes of 50 cubic centimeters or greater will be fabricated to facilitate comparison with NaI(Tl) crystals currently available.
27

Europium and samarium doped fluorochlorozirconate (FCZ) glasses for optoelectronics applications: thermal and optical properties

Panigrahi, Sujata 23 August 2011
<p>Fluorochlorozirconate (FCZ) glasses are a member of heavy metal fluoride glasses, and are derived from a well known ZBLAN glass. In this work, halogen salts of europium (Eu<sup>2+</sup>) and samarium (Sm<sup>3+</sup>) are used as dopants in FCZ glasses. FCZ glasses doped with Eu<sup>2+</sup> and Sm<sup>3+</sup> can be used in high resolution x-ray imaging for tissue scanning, and have been shown to behave as storage phosphors and/or x-ray scintillators.</p> <p>Glass transition (T<sub>g</sub>), heat capacity (C<sub>p</sub>) and glass crystallization (T<sub>c</sub>) properties of Eu<sup>2+</sup> and Sm<sup>3+</sup> doped and undoped FCZ glasses with different amounts of relative Cl concentration, that is, with respect to the total Cl and F concentration have been investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) techniques. MDSC experiments were performed at different heating rates to analyze the complex transitions and to get a better resolution of any overlapping transitions. The crystallization kinetics have also been studied by applying the Kissinger technique to multiple DSC scans in order to determine the thermal stability of FCZ glass samples used in this work. The apparent activation energy for the crystallization process was obtained by the crystallization peak temperature shift method in the conventional DSC mode. The specific heat capacity (C<sub>p</sub>) has been measured as a function of composition, and the glass transition temperature (T<sub>g</sub>) is evaluated from the smooth change in the heat capacity curve during the glass transformation. The observation of two possible glass transitions points to the presence of two phases in these FCZ glasses with higher relative Cl content.</p> <p>Optical transmission spectra of both doped and undoped FCZ glass samples have been measured by infrared spectroscopy and optical band gaps corresponding to an absorption coefficient of 10<sup>3</sup> cm<sup>-1</sup> have been determined. A good correlation between X-ray luminescence and the glass structure is observed. While the integrated photoluminescence intensity increases linearly with the Sm<sup>3+</sup> concentration, the integrated X-ray luminescence increases sublinearly. The importance of appropriate annealing conditions, such as temperature, time and ambient atmosphere, and their effect on the X-ray luminescence of rare earth (RE) doped FCZ glass samples have been investigated. Annealing conditions influence the formation of BaCl<sub>2</sub> nanocrystals in the glass and the properties of the resulting FCZ glass ceramics.</p>
28

Europium and samarium doped fluorochlorozirconate (FCZ) glasses for optoelectronics applications: thermal and optical properties

Panigrahi, Sujata 23 August 2011 (has links)
<p>Fluorochlorozirconate (FCZ) glasses are a member of heavy metal fluoride glasses, and are derived from a well known ZBLAN glass. In this work, halogen salts of europium (Eu<sup>2+</sup>) and samarium (Sm<sup>3+</sup>) are used as dopants in FCZ glasses. FCZ glasses doped with Eu<sup>2+</sup> and Sm<sup>3+</sup> can be used in high resolution x-ray imaging for tissue scanning, and have been shown to behave as storage phosphors and/or x-ray scintillators.</p> <p>Glass transition (T<sub>g</sub>), heat capacity (C<sub>p</sub>) and glass crystallization (T<sub>c</sub>) properties of Eu<sup>2+</sup> and Sm<sup>3+</sup> doped and undoped FCZ glasses with different amounts of relative Cl concentration, that is, with respect to the total Cl and F concentration have been investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) techniques. MDSC experiments were performed at different heating rates to analyze the complex transitions and to get a better resolution of any overlapping transitions. The crystallization kinetics have also been studied by applying the Kissinger technique to multiple DSC scans in order to determine the thermal stability of FCZ glass samples used in this work. The apparent activation energy for the crystallization process was obtained by the crystallization peak temperature shift method in the conventional DSC mode. The specific heat capacity (C<sub>p</sub>) has been measured as a function of composition, and the glass transition temperature (T<sub>g</sub>) is evaluated from the smooth change in the heat capacity curve during the glass transformation. The observation of two possible glass transitions points to the presence of two phases in these FCZ glasses with higher relative Cl content.</p> <p>Optical transmission spectra of both doped and undoped FCZ glass samples have been measured by infrared spectroscopy and optical band gaps corresponding to an absorption coefficient of 10<sup>3</sup> cm<sup>-1</sup> have been determined. A good correlation between X-ray luminescence and the glass structure is observed. While the integrated photoluminescence intensity increases linearly with the Sm<sup>3+</sup> concentration, the integrated X-ray luminescence increases sublinearly. The importance of appropriate annealing conditions, such as temperature, time and ambient atmosphere, and their effect on the X-ray luminescence of rare earth (RE) doped FCZ glass samples have been investigated. Annealing conditions influence the formation of BaCl<sub>2</sub> nanocrystals in the glass and the properties of the resulting FCZ glass ceramics.</p>
29

TWO ULTRAPRECISE THERMAL EXPANSION INVESTIGATIONS: SODIUM SILICATE - A LOW-EXPANSION CEMENT, AND THERMAL EXPANSION UNIFORMITY OF ZERODUR

Hansen, Glenn Alexander January 1985 (has links)
No description available.
30

Site selective spectroscopy of Eu3+ in the glass ceramic forming system Na2O.CaO.Al2O3.TiO2.SiO2

Belliveau, Thomas F. January 1988 (has links)
Compositionally related glasses and ceramics of the Na$ sb2$O$ cdot$CaO$ cdot$Al$ sb2$O$ sb3 cdot$TiO$ sb2 cdot$SiO$ sb2$ system (sphene glass-ceramics) doped with Eu$ sp{3+}$ were examined using site-selective spectroscopic techniques (FLN). In sphene glass-ceramics, Eu$ sp{3+}$ preferentially partitions into the crystalline sphene phase. The partition ratio is concentration dependent, decreasing at higher concentrations, because of the limited solid solubility of Eu$ sp{3+}$ in sphene. The concentration occurs at the time of phase separation; Eu$ sp{3+}$ preferentially enters the more ionic (CaO, TiO$ sb2$)- rich droplet phase which eventually becomes sphene. In sphene, Eu$ sp{3+}$ substitutes for Ca$ sp{2+}$ appearing in three different sites caused by associated charge compensation defects. From an analysis of the FLN spectra of the different glasses, the framework for a model describing the coordination shell of Eu$ sp{3+}$ in oxide glasses is developed. The model suggests that Eu$ sp{3+}$ behaves as a network forming ion or quasi-molecular complex. The model is used to explain qualitative features of Eu$ sp{3+}$ FLN spectra including the dependence of the clustering of points of the major crystal field parameter ratios plot on the relative number of non-bridging oxygen ions and Eu$ sp{3+}$ ions in the glass.

Page generated in 0.0528 seconds